IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3041-d180754.html
   My bibliography  Save this article

A Novel Integrated Method to Diagnose Faults in Power Transformers

Author

Listed:
  • Jing Wu

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

  • Kun Li

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

  • Jing Sun

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

  • Li Xie

    (China Electric Power Research Institute, Beijing 100192, China)

Abstract

In a smart grid, many transformers are equipped for both power transmission and conversion. Because a stable operation of transformers is essential to maintain grid security, studying the fault diagnosis method of transformers can improve both fault detection and fault prevention. In this paper, a data-driven method, which uses a combination of Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), and Support Vector Machines (SVM) to enable a better fault diagnosis of transformers, is proposed and investigated. PCA is used to reduce the dimension of transformer fault state data, and an improved PSO algorithm is used to obtain the optimal parameters for the SVM model. SVM, which is optimized using PSO, is used for the transformer-fault diagnosis. The diagnostic-results of the actual transformers confirm that the new method is effective. We also verified the importance of data richness with respect to the accuracy of the transformer-fault diagnosis.

Suggested Citation

  • Jing Wu & Kun Li & Jing Sun & Li Xie, 2018. "A Novel Integrated Method to Diagnose Faults in Power Transformers," Energies, MDPI, vol. 11(11), pages 1-8, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3041-:d:180754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    2. Youyuan Wang & Senlian Gong & Stanislaw Grzybowski, 2011. "Reliability Evaluation Method for Oil–Paper Insulation in Power Transformers," Energies, MDPI, vol. 4(9), pages 1-14, September.
    3. Zhongyong Zhao & Chao Tang & Qu Zhou & Lingna Xu & Yingang Gui & Chenguo Yao, 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine," Energies, MDPI, vol. 10(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    2. Minghui Ou & Hua Wei & Yiyi Zhang & Jiancheng Tan, 2019. "A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
    4. Giovanni Betta & Domenico Capriglione & Luigi Ferrigno & Marco Laracca & Gianfranco Miele & Nello Polese & Silvia Sangiovanni, 2021. "A Fault Diagnostic Scheme for Predictive Maintenance of AC/DC Converters in MV/LV Substations," Energies, MDPI, vol. 14(22), pages 1-23, November.
    5. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Javier Leiva & Rubén Carmona Pardo & José A. Aguado, 2019. "Data Analytics-Based Multi-Objective Particle Swarm Optimization for Determination of Congestion Thresholds in LV Networks," Energies, MDPI, vol. 12(7), pages 1-20, April.
    3. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    4. Mehran Tahir & Stefan Tenbohlen, 2019. "A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model," Energies, MDPI, vol. 13(1), pages 1-25, December.
    5. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    6. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    7. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    8. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    9. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    10. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    11. Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
    12. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    14. Mehran Tahir & Stefan Tenbohlen, 2021. "Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements," Energies, MDPI, vol. 14(11), pages 1-25, May.
    15. Satoru Miyazaki, 2021. "Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data," Energies, MDPI, vol. 15(1), pages 1-14, December.
    16. Chunguang Suo & Yanan Ren & Wenbin Zhang & Yincheng Li & Yanyun Wang & Yi Ke, 2021. "Evaluation Method for Winding Performance of Distribution Transformer," Energies, MDPI, vol. 14(18), pages 1-25, September.
    17. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Issouf Fofana & John Sabau & Amidou Betie, 2015. "Measurement of the Relative Free Radical Content of Insulating Oils of Petroleum Origin," Energies, MDPI, vol. 8(8), pages 1-13, July.
    19. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    20. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3041-:d:180754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.