Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yuki Yamada & Kenji Usui & Keitaro Sodeyama & Seongjae Ko & Yoshitaka Tateyama & Atsuo Yamada, 2016. "Hydrate-melt electrolytes for high-energy-density aqueous batteries," Nature Energy, Nature, vol. 1(10), pages 1-9, October.
- Yuesheng Wang & Jue Liu & Byungju Lee & Ruimin Qiao & Zhenzhong Yang & Shuyin Xu & Xiqian Yu & Lin Gu & Yong-Sheng Hu & Wanli Yang & Kisuk Kang & Hong Li & Xiao-Qing Yang & Liquan Chen & Xuejie Huang, 2015. "Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
- M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
- Yong-Ning Zhou & Jun Ma & Enyuan Hu & Xiqian Yu & Lin Gu & Kyung-Wan Nam & Liquan Chen & Zhaoxiang Wang & Xiao-Qing Yang, 2014. "Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
- Ding, Yin & Mu, Daobin & Wu, Borong & Wang, Rui & Zhao, Zhikun & Wu, Feng, 2017. "Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles," Applied Energy, Elsevier, vol. 195(C), pages 586-599.
- Mauro Pasta & Colin D. Wessells & Robert A. Huggins & Yi Cui, 2012. "A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
- Xuebing Han & Minggao Ouyang & Languang Lu & Jianqiu Li, 2014. "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles," Energies, MDPI, vol. 7(8), pages 1-15, July.
- Jiajun Wang & Yu-chen Karen Chen-Wiegart & Jun Wang, 2014. "In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
- Yang Wen & Kai He & Yujie Zhu & Fudong Han & Yunhua Xu & Isamu Matsuda & Yoshitaka Ishii & John Cumings & Chunsheng Wang, 2014. "Expanded graphite as superior anode for sodium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
- Yuesheng Wang & Xiqian Yu & Shuyin Xu & Jianming Bai & Ruijuan Xiao & Yong-Sheng Hu & Hong Li & Xiao-Qing Yang & Liquan Chen & Xuejie Huang, 2013. "A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
- Yang Sun & Liang Zhao & Huilin Pan & Xia Lu & Lin Gu & Yong-Sheng Hu & Hong Li & Michel Armand & Yuichi Ikuhara & Liquan Chen & Xuejie Huang, 2013. "Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesca De Giorgio & Mattia Gaboardi & Lara Gigli & Sergio Brutti & Catia Arbizzani, 2022. "Deciphering the Interplay between Binders and Electrolytes on the Performance of Li 4 Ti 5 O 12 Electrodes for Li-Ion Batteries," Energies, MDPI, vol. 15(12), pages 1-13, June.
- Ruslan R. Samigullin & Maxim V. Zakharkin & Oleg A. Drozhzhin & Evgeny V. Antipov, 2023. "Thermal Stability of NASICON-Type Na 3 V 2 (PO 4 ) 3 and Na 4 VMn(PO 4 ) 3 as Cathode Materials for Sodium-ion Batteries," Energies, MDPI, vol. 16(7), pages 1-13, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
- Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
- Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
- Xiao Zhu & Tuan K. A. Hoang & Pu Chen, 2017. "Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries," Energies, MDPI, vol. 10(11), pages 1-17, November.
- Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
- Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.
- Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
- Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
- Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
- Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
- Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
- Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
- Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
- Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Wang, Caiwei & Cao, Liyun & Huang, Jianfeng & Li, Jiayin & Kajiyoshi, Koji, 2021. "Divergent thinking and its application in biomass carbon electrode preparation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
- Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
More about this item
Keywords
operando/in-situ XRD; olivine structure; layered metal oxide; spinel oxide; tunnel-type structure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2963-:d:179619. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.