IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2863-d177552.html
   My bibliography  Save this article

Impact Evaluation of Wind Power Geographic Dispersion on Future Operating Reserve Needs

Author

Listed:
  • Fernando Manuel Carvalho da Silva Santos

    (College of Electrical Engineering, Federal University of Pará, Pará 66075-110, Brazil)

  • Leonardo Elizeire Bremermann

    (Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Santa Catarina 88040-900, Brazil
    Department of Energy and Production, Institute of Science and Technology, INESC P&D Brasil, Barrio Gonzaga Santos 11055-300, Brazil)

  • Tadeu Da Mata Medeiros Branco

    (College of Electrical Engineering, Federal University of Pará, Pará 66075-110, Brazil)

  • Diego Issicaba

    (Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Santa Catarina 88040-900, Brazil
    Department of Energy and Production, Institute of Science and Technology, INESC P&D Brasil, Barrio Gonzaga Santos 11055-300, Brazil)

  • Mauro Augusto da Rosa

    (Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Santa Catarina 88040-900, Brazil
    Department of Energy and Production, Institute of Science and Technology, INESC P&D Brasil, Barrio Gonzaga Santos 11055-300, Brazil)

Abstract

This paper evaluates the potential of diverse wind power patterns to balance the global power output of wind farms using the concept of operating reserve assessment. To achieve this, operating reserve assessment models are utilized to evaluate bulk generation systems under several conditions of wind power geographic distribution. Different wind behavior patterns and wind power penetration levels are tested using a modified configuration of the Institute of Electrical and Electronics Engineers Reliability Test System 96 (IEEE RTS-96). The results highlight that on a large country scale system with different wind characteristics, the diversification of wind behavior might be conducive to a compensation of wind power fluctuations, which may significantly decrease the need for system operating reserves. This effect is verified using probability distribution functions of reserve needs estimated by sequential Monte Carlo simulations (SMCS), such that useful information regarding generation capacity flexibility is drawn from the evaluations.

Suggested Citation

  • Fernando Manuel Carvalho da Silva Santos & Leonardo Elizeire Bremermann & Tadeu Da Mata Medeiros Branco & Diego Issicaba & Mauro Augusto da Rosa, 2018. "Impact Evaluation of Wind Power Geographic Dispersion on Future Operating Reserve Needs," Energies, MDPI, vol. 11(11), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2863-:d:177552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Li & Ming Zhou & Dawei Wang & Yuehui Huang & Zifen Han, 2017. "Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    4. Hejun Yang & Lei Wang & Yeyu Zhang & Xianjun Qi & Lei Wang & Hongbin Wu, 2018. "Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique," Energies, MDPI, vol. 11(4), pages 1-16, March.
    5. Chia-An Chang & Yuan-Kang Wu & Bin-Kwie Chen, 2016. "Determination of Maximum Wind Power Penetration in an Isolated Island System by Considering Spinning Reserve," Energies, MDPI, vol. 9(9), pages 1-16, August.
    6. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    7. Drake, Ben & Hubacek, Klaus, 2007. "What to expect from a greater geographic dispersion of wind farms?--A risk portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 3999-4008, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Vieira & Mauro Rosa & Leonardo Bremermann & Erika Pequeno & Sandy Miranda, 2020. "Long-term Static and Operational Reserves Assessment Considering Operating and Market Agreements Representation to Multi-Area Systems," Energies, MDPI, vol. 13(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    8. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    9. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    10. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    11. Sarah Barrows & Kendall Mongird & Brian Naughton & Rachid Darbali-Zamora, 2021. "Valuation of Distributed Wind in an Isolated System," Energies, MDPI, vol. 14(21), pages 1-20, October.
    12. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    13. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    14. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    15. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    16. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    17. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    18. Tapia Carpio, Lucio Guido & Cardoso Guimarães, Frederico A., 2024. "Regional diversification of hydro, wind, and solar generation potential: A mean-variance model to stabilize power fluctuations in the Brazilian integrated electrical energy transmission and distributi," Renewable Energy, Elsevier, vol. 235(C).
    19. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    20. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2863-:d:177552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.