IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1786-d117779.html
   My bibliography  Save this article

Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation

Author

Listed:
  • Yan Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Ming Zhou

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Dawei Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Yuehui Huang

    (China Electric Power Research Institute (CEPRI), Beijing 100192, China)

  • Zifen Han

    (State Grid Gansu Electric Power Company, Lanzhou 730070, China)

Abstract

Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF), this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.

Suggested Citation

  • Yan Li & Ming Zhou & Dawei Wang & Yuehui Huang & Zifen Han, 2017. "Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation," Energies, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1786-:d:117779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekström, Jussi & Koivisto, Matti & Mellin, Ilkka & Millar, John & Saarijärvi, Eero & Haarla, Liisa, 2015. "Assessment of large scale wind power generation with new generation locations without measurement data," Renewable Energy, Elsevier, vol. 83(C), pages 362-374.
    2. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Ye & Chi, Yuanying & Wu, Di & Peng, Rui & Wu, Shaomin, 2021. "Reliability of integrated electricity and gas supply system with performance substitution and sharing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Xiaolu Chen & Ji Han & Tingting Zheng & Ping Zhang & Simo Duan & Shihong Miao, 2019. "A Vine-Copula Based Voltage State Assessment with Wind Power Integration," Energies, MDPI, vol. 12(10), pages 1-21, May.
    3. Fernando Manuel Carvalho da Silva Santos & Leonardo Elizeire Bremermann & Tadeu Da Mata Medeiros Branco & Diego Issicaba & Mauro Augusto da Rosa, 2018. "Impact Evaluation of Wind Power Geographic Dispersion on Future Operating Reserve Needs," Energies, MDPI, vol. 11(11), pages 1-13, October.
    4. Daw Saleh Sasi Mohammed & Muhammad Murtadha Othman & Ahmed Elbarsha, 2020. "A Modified Artificial Bee Colony for Probabilistic Peak Shaving Technique in Generators Operation Planning: Optimal Cost–Benefit Analysis," Energies, MDPI, vol. 13(12), pages 1-23, June.
    5. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    2. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    3. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    7. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    8. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    9. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    10. Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Optimization of series–parallel multi-state systems under maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1620-1626.
    11. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    14. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    15. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    16. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    17. Nourelfath, Mustapha & Nahas, Nabil & Ben-Daya, Mohamed, 2016. "Integrated preventive maintenance and production decisions for imperfect processes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 21-31.
    18. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    19. Xia, Weifu & Wang, Yanhui & Hao, Yucheng & He, Zhichao & Yan, Kai & Zhao, Fan, 2024. "Reliability analysis for complex electromechanical multi-state systems utilizing universal generating function techniques," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Huang, Hong-Zong, 2019. "Dynamic demand satisfaction probability of consecutive sliding window systems with warm standby components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 397-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1786-:d:117779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.