IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2846-d177234.html
   My bibliography  Save this article

Preliminary Performance Tests and Simulation of a V-Shape Roof Guide Vane Mounted on an Eco-Roof System

Author

Listed:
  • Xiaohang Wang

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Electronic and Information Engineering, Qinzhou University, Qinzhou 535000, China)

  • Wentong Chong

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Kokhoe Wong

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Liphuat Saw

    (Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia)

  • Sinchew Poh

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Saihin Lai

    (Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Chin-Tsan Wang

    (Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, I-Lan 260, Taiwan)

Abstract

The technical and economic features of a patented V-shape roof guide vane (VRGV) with a solar and wind power generation system mounted on an eco-roof system are presented in this paper. Moreover, this innovative VRGV was investigated on for the purpose of improving the performance of a vertical axis wind turbine (VAWT), which was installed on an eco-roof system to solve the low-efficiency power generation problem of the wind turbines under the condition of a low wind speed. This paper proposes a preliminary study for the performance of the VAWT with the VRGV on a building. This research used a mock-up building with a double slope roof, where a five straight-bladed VAWT was mounted and tested under two conditions, with and without the VRGV. From the comparative experiments, the self-starting performance and rotational speed of the VAWT mounted above a double slope roof with the VRGV have been significantly improved compared to the VAWT without the VRGV. Further, the power coefficient ( C p ) of the VAWT can be augmented to about 71.2% increment due to the VRGV design. In addition, numerical simulations by computational fluid dynamics (CFD) were proposed to verify the augmented effect of the C p of the VAWT under the influence of the VRGV in the experiment. Besides, economic estimation of the VRGV was conducted.

Suggested Citation

  • Xiaohang Wang & Wentong Chong & Kokhoe Wong & Liphuat Saw & Sinchew Poh & Saihin Lai & Chin-Tsan Wang, 2018. "Preliminary Performance Tests and Simulation of a V-Shape Roof Guide Vane Mounted on an Eco-Roof System," Energies, MDPI, vol. 11(10), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2846-:d:177234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    2. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    3. Müller, Gerald & Jentsch, Mark F. & Stoddart, Euan, 2009. "Vertical axis resistance type wind turbines for use in buildings," Renewable Energy, Elsevier, vol. 34(5), pages 1407-1412.
    4. Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2014. "Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions," Renewable Energy, Elsevier, vol. 67(C), pages 242-251.
    5. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    6. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Chowdhury, Abdullah Mobin & Akimoto, Hiromichi & Hara, Yutaka, 2016. "Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration," Renewable Energy, Elsevier, vol. 85(C), pages 327-337.
    9. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    10. Ackermann, Thomas & Söder, Lennart, 2000. "Wind energy technology and current status: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(4), pages 315-374, December.
    11. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    12. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    13. Chong, W.T. & Fazlizan, A. & Poh, S.C. & Pan, K.C. & Hew, W.P. & Hsiao, F.B., 2013. "The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane," Applied Energy, Elsevier, vol. 112(C), pages 601-609.
    14. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    15. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    16. Yanzhao Yang & Zhiping Guo & Yanfeng Zhang & Ho Jinyama & Qingan Li, 2017. "Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades," Energies, MDPI, vol. 10(11), pages 1-18, October.
    17. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Saihin Lai & Liphuat Saw & Xianbo Xiang & Chin-Tsan Wang, 2019. "Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application," Energies, MDPI, vol. 12(8), pages 1-28, April.
    2. Wang, Hao & Yi, Minyi & Zhang, Zutao & Zhang, Hexiang & Liu, Jizong & Zhu, Zhongyin & Wang, Qijun & Yuan, Yanping, 2023. "A wind-solar energy harvester based on airflow enhancement mechanism for rail-side devices," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    2. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    3. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    5. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    6. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    7. Seyedsaeed Tabatabaeikia & Nik Nazri Bin Nik-Ghazali & Wen Tong Chong & Behzad Shahizare & Ahmad Fazlizan & Alireza Esmaeilzadeh & Nima Izadyar, 2016. "A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 9(5), pages 1-19, May.
    8. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    9. Qasemi, Keyhan & Azadani, Leila N., 2020. "Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector," Energy, Elsevier, vol. 202(C).
    10. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    11. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    12. Batista, N.C. & Melício, R. & Mendes, V.M.F. & Calderón, M. & Ramiro, A., 2015. "On a self-start Darrieus wind turbine: Blade design and field tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 508-522.
    13. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    14. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    15. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    16. Rolland, S.A. & Thatcher, M. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Benchmark experiments for simulations of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 111(C), pages 1183-1194.
    17. Chong, W.T. & Pan, K.C. & Poh, S.C. & Fazlizan, A. & Oon, C.S. & Badarudin, A. & Nik-Ghazali, N., 2013. "Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application," Renewable Energy, Elsevier, vol. 51(C), pages 388-397.
    18. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    19. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Shern-Khai Ung & Wen-Tong Chong & Shabudin Mat & Jo-Han Ng & Yin-Hui Kok & Kok-Hoe Wong, 2022. "Investigation into the Aerodynamic Performance of a Vertical Axis Wind Turbine with Endplate Design," Energies, MDPI, vol. 15(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2846-:d:177234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.