IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2835-d177105.html
   My bibliography  Save this article

Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy)

Author

Listed:
  • Virgilio Ciancio

    (DIAEE-Area Fisica Tecnica, University of Rome “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Serena Falasca

    (Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 Coppito-L’Aquila, Italy
    Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events (CETEMPS), University of L’Aquila, Via Vetoio, 67100 Coppito-L’Aquila, Italy
    Now at DISPeA, Dipartimento di Scienze Pure ad Applicate, University of Urbino “Carlo Bo”, Campus Scientifico Enrico Mattei, 61029 Urbino (PU), Italy)

  • Iacopo Golasi

    (DIAEE-Area Fisica Tecnica, University of Rome “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Gabriele Curci

    (Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 Coppito-L’Aquila, Italy
    Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events (CETEMPS), University of L’Aquila, Via Vetoio, 67100 Coppito-L’Aquila, Italy)

  • Massimo Coppi

    (DIAEE-Area Fisica Tecnica, University of Rome “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Ferdinando Salata

    (DIAEE-Area Fisica Tecnica, University of Rome “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

Abstract

The simulation of the energy consumptions in an hourly regime is necessary in order to perform calculations on residential buildings of particular relevance for volume or for architectural features. In such cases, the simplified methodology provided by the regulations may be inadequate, and the use of software like EnergyPlus is needed. To obtain reliable results, usually, significant time is spent on the meticulous insertion of the geometrical inputs of the building, together with the properties of the envelope materials and systems. Less attention is paid to the climate database. The databases available on the EnergyPlus website refer to airports located in rural areas near major cities. If the building to be simulated is located in a metropolitan area, it may be affected by the local heat island, and the database used as input to the software should take this phenomenon into account. To this end, it is useful to use a meteorological model such as the Weather Research and Forecasting (WRF) model to construct an appropriate input climate file. A case study based on a building located in the city center of Rome (Italy) shows that, if the climatic forcing linked to the heat island is not considered, the estimated consumption due to the cooling is underestimated by 35–50%. In particular, the analysis and the seasonal comparison between the energy needs of the building simulated by EnergyPlus, with the climatic inputs related to two airports in the rural area of Rome and with the inputs provided by the WRF model related to the center of Rome, show discrepancies of about (i) WRF vs. Fiumicino (FCO): Δ = −3.48% for heating, Δ = 49.25% for cooling; (ii) WRF vs. Ciampino (CIA): Δ = −7.38% for heating, Δ = +35.52% for cooling.

Suggested Citation

  • Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Gabriele Curci & Massimo Coppi & Ferdinando Salata, 2018. "Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy)," Energies, MDPI, vol. 11(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2835-:d:177105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    2. Chiara Burattini & Fabio Nardecchia & Fabio Bisegna & Lucia Cellucci & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings," Sustainability, MDPI, vol. 7(8), pages 1-17, August.
    3. Francesca Pagliaro & Lucia Cellucci & Chiara Burattini & Fabio Bisegna & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "A Methodological Comparison between Energy and Environmental Performance Evaluation," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    4. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    5. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yitian Xing & Fue-Sang Lien & William Melek & Eugene Yee, 2022. "A Multi-Hour Ahead Wind Power Forecasting System Based on a WRF-TOPSIS-ANFIS Model," Energies, MDPI, vol. 15(15), pages 1-35, July.
    2. Ruixin Li & Yiwan Zhao & Gaochong Lv & Weilin Li & Jiayin Zhu & Olga L. Bantserova, 2021. "Thermal Performance Analysis of Heat Collection Wall in High-Rise Building Based on the Measurement of Near-Wall Microclimate," Energies, MDPI, vol. 14(7), pages 1-24, April.
    3. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    5. Lukas Lundström & Jan Akander & Jesús Zambrano, 2019. "Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate," Energies, MDPI, vol. 12(3), pages 1-27, February.
    6. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    7. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    8. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Pieter de Wilde & Massimo Coppi & Livio de Santoli & Ferdinando Salata, 2019. "Resilience of a Building to Future Climate Conditions in Three European Cities," Energies, MDPI, vol. 12(23), pages 1-15, November.
    9. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    10. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    11. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    2. Elisa Pennacchia & Mariagrazia Tiberi & Elisa Carbonara & Davide Astiaso Garcia & Fabrizio Cumo, 2016. "Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas," Sustainability, MDPI, vol. 8(7), pages 1-11, June.
    3. Felipe Encinas & Carlos Aguirre & Carlos Marmolejo-Duarte, 2018. "Sustainability Attributes in Real Estate Development: Private Perspectives on Advancing Energy Regulation in a Liberalized Market," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    4. Giacomo Salvadori & Fabio Fantozzi & Michele Rocca & Francesco Leccese, 2016. "The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings," Energies, MDPI, vol. 9(12), pages 1-13, November.
    5. Fabio Nardecchia & Benedetta Mattoni & Francesca Pagliaro & Lucia Cellucci & Fabio Bisegna & Franco Gugliermetti, 2016. "Computational Fluid Dynamic Modelling of Thermal Periodic Stabilized Regime in Passive Buildings," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    6. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    7. Andrea Urbinati & Davide Chiaroni & Paolo Maccarrone & Antonio Messeni Petruzzelli & Federico Frattini, 2022. "A multidimensional scorecard of KPIs for retrofit measures of buildings: A systematic literature review," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(6), pages 1968-1979, November.
    8. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    9. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    10. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    11. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    12. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    13. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    14. Coline Senior & Alenka Temeljotov Salaj & Milena Vukmirovic & Mina Jowkar & Živa Kristl, 2021. "The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings," Energies, MDPI, vol. 14(13), pages 1-27, July.
    15. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    16. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    17. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Impact of a Composite Trombe Wall Incorporating Phase Change Materials on the Thermal Behavior of an Individual House with Low Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-32, September.
    18. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    19. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    20. Shen, Pengyuan & Yang, Biao, 2020. "Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2835-:d:177105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.