IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2526-d171408.html
   My bibliography  Save this article

Decision Support for Negotiations among Microgrids Using a Multiagent Architecture

Author

Listed:
  • Tiago Pinto

    (BISITE Research Group, University of Salamanca, 37007 Salamanca, Spain)

  • Mohammad Ali Fotouhi Ghazvini

    (GECAD–Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Institute of Engineering, Polytechnic of Porto (ISEP/IPP), 4200-072 Porto, Portugal)

  • Joao Soares

    (GECAD–Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Institute of Engineering, Polytechnic of Porto (ISEP/IPP), 4200-072 Porto, Portugal)

  • Ricardo Faia

    (GECAD–Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Institute of Engineering, Polytechnic of Porto (ISEP/IPP), 4200-072 Porto, Portugal)

  • Juan Manuel Corchado

    (BISITE Research Group, University of Salamanca, 37007 Salamanca, Spain
    Osaka Institute of Technology, Osaka 535-8585, Japan)

  • Rui Castro

    (INESC-ID/IST, University of Lisbon, 1049-001 Lisbon, Portugal)

  • Zita Vale

    (Polytechnic of Porto (IPP), 4200-465 Porto, Portugal)

Abstract

This paper presents a decision support model for negotiation portfolio optimization considering the participation of players in local markets (at the microgrid level) and in external markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements. A local internal market model for microgrids is defined, and the connection between interconnected microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market environment considering the local market setting and the interaction between integrated microgrids is modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity market environment, the interaction between small players at a microgrid scale, and to accommodate the decision support features. The integration of the proposed models in this multi-agent society and interaction between these distinct specific multi-agent systems enables modeling the system as a whole and thus testing and validating the impact of the method in the outcomes of the involved players. Results show that considering the several negotiation opportunities as complementary and making use of the most appropriate markets depending on the expected prices at each moment allows players to achieve more profitable results.

Suggested Citation

  • Tiago Pinto & Mohammad Ali Fotouhi Ghazvini & Joao Soares & Ricardo Faia & Juan Manuel Corchado & Rui Castro & Zita Vale, 2018. "Decision Support for Negotiations among Microgrids Using a Multiagent Architecture," Energies, MDPI, vol. 11(10), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2526-:d:171408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva, Francisco & Teixeira, Brígida & Pinto, Tiago & Santos, Gabriel & Vale, Zita & Praça, Isabel, 2016. "Generation of realistic scenarios for multi-agent simulation of electricity markets," Energy, Elsevier, vol. 116(P1), pages 128-139.
    2. Fotouhi Ghazvini, M.A. & Morais, Hugo & Vale, Zita, 2012. "Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems," Applied Energy, Elsevier, vol. 96(C), pages 281-291.
    3. Liu, Haifeng & Tesfatsion, Leigh & Chowdhury, A.A., 2009. "Locational Marginal Pricing Basics for Restructured Wholesale Power Markets," ISU General Staff Papers 200901010800001031, Iowa State University, Department of Economics.
    4. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, January.
    5. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    6. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    3. Anees, Amir & Dillon, Tharam & Chen, Yi-Ping Phoebe, 2019. "A novel decision strategy for a bilateral energy contract," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Fatima Zahra Harmouch & Ahmed F. Ebrahim & Mohammad Mahmoudian Esfahani & Nissrine Krami & Nabil Hmina & Osama A. Mohammed, 2019. "An Optimal Energy Management System for Real-Time Operation of Multiagent-Based Microgrids Using a T-Cell Algorithm," Energies, MDPI, vol. 12(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Kedi & Chen, Huiyao & Wang, Yi & Chen, Qixin, 2022. "Data-driven financial transmission right scenario generation and speculation," Energy, Elsevier, vol. 238(PC).
    2. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    3. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    4. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    5. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    7. Mihai Daniel Roman & Diana Mihaela Stanculescu, 2021. "An Analysis of Countries’ Bargaining Power Derived from the Natural Gas Transportation System Using a Cooperative Game Theory Model," Energies, MDPI, vol. 14(12), pages 1-13, June.
    8. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    9. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    10. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    11. Hernán Gómez-Villarreal & Miguel Carrión & Ruth Domínguez, 2019. "Optimal Management of Combined-Cycle Gas Units with Gas Storage under Uncertainty," Energies, MDPI, vol. 13(1), pages 1-29, December.
    12. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    13. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    14. Thibaut Th'eate & S'ebastien Mathieu & Damien Ernst, 2020. "An Artificial Intelligence Solution for Electricity Procurement in Forward Markets," Papers 2006.05784, arXiv.org, revised Dec 2020.
    15. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    16. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    17. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    18. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).
    19. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    20. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2526-:d:171408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.