IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p113-d301730.html
   My bibliography  Save this article

Optimal Management of Combined-Cycle Gas Units with Gas Storage under Uncertainty

Author

Listed:
  • Hernán Gómez-Villarreal

    (Department of Electrical Engineering, University of Castilla—La Mancha, 45071 Toledo, Spain)

  • Miguel Carrión

    (Department of Electrical Engineering, University of Castilla—La Mancha, 45071 Toledo, Spain)

  • Ruth Domínguez

    (Department of Electrical Engineering, University of Castilla—La Mancha, 45071 Toledo, Spain)

Abstract

We formulated a problem faced by a power producer who owns a combined-cycle gas turbine (CCGT) and desires to maximize its expected profit in a medium-term planning horizon. We assumed that this producer can participate in the spot and over-the-counter markets to buy and sell natural gas and electricity. We also considered that the power producer has gas storage available that can be used for handling the availability of gas and the uncertainty of gas prices. A stochastic programming model was used to formulate this problem, where the electricity and gas prices were characterized as stochastic processes using a set of scenarios. The proposed model includes the technical constraints resulting from the operation of the combined cycle power plant and the gas storage and a detailed description of the different markets in which the power producer can participate. Finally, the performance of the proposed model is tested in a realistic case study. The numerical results show that the usage of the gas storage unit allows the power producer to increase its expected profit. Additionally, it is observed that bilateral contracting decisions are not influenced by the presence of the gas storage unit.

Suggested Citation

  • Hernán Gómez-Villarreal & Miguel Carrión & Ruth Domínguez, 2019. "Optimal Management of Combined-Cycle Gas Units with Gas Storage under Uncertainty," Energies, MDPI, vol. 13(1), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:113-:d:301730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    2. Jirutitijaroen, Panida & Kim, Sujin & Kittithreerapronchai, Oran & Prina, José, 2013. "An optimization model for natural gas supply portfolios of a power generation company," Applied Energy, Elsevier, vol. 107(C), pages 1-9.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, March.
    4. Knudsen, Brage Rugstad & Whitson, Curtis H. & Foss, Bjarne, 2014. "Shale-gas scheduling for natural-gas supply in electric power production," Energy, Elsevier, vol. 78(C), pages 165-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    2. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    3. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    4. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    5. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    7. Murphy, Frederic & Pierru, Axel & Smeers, Yves, 2019. "Measuring the effects of price controls using mixed complementarity models," European Journal of Operational Research, Elsevier, vol. 275(2), pages 666-676.
    8. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    9. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    10. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    11. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    12. Csercsik, Dávid & Hubert, Franz & Sziklai, Balázs R. & Kóczy, László Á., 2019. "Modeling transfer profits as externalities in a cooperative game-theoretic model of natural gas networks," Energy Economics, Elsevier, vol. 80(C), pages 355-365.
    13. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    14. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    15. Thibaut Th'eate & S'ebastien Mathieu & Damien Ernst, 2020. "An Artificial Intelligence Solution for Electricity Procurement in Forward Markets," Papers 2006.05784, arXiv.org, revised Dec 2020.
    16. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    17. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    18. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    19. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:113-:d:301730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.