IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1427-d112194.html
   My bibliography  Save this article

Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms

Author

Listed:
  • Wenlong Tian

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

  • Zhaoyong Mao

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China)

  • Fuliang Zhao

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

Limited battery energy restricts the duration of the underwater operation of underwater mooring platforms (UMPs). In this paper, a flow-induced vibration energy converter (FIVEC) is designed to produce power for the UMPs and extend their operational time. The FIVEC is equipped with a thin plate to capture the kinetic energy in the vortices shed from the surface of the UMP. A magnetic coupling (MC) is applied for the non-contacting transmission of the plate torque to the generators so that the friction loss can be minimized. In order to quantify and evaluate the performance of the FIVEC, two-dimensional computational fluid dynamics (CFD) simulations are performed. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport (SST) k-ω turbulent model is utilized. The CFD method is firstly validated using existing experimental data. Then the influences of plate length and system damping on the performance of the FIVEC are evaluated. The results show that the device has a maximum averaged power coefficient of 0.0520 (13.86 W) in the considered situations. The results also demonstrate the feasibility of this energy converter plan.

Suggested Citation

  • Wenlong Tian & Zhaoyong Mao & Fuliang Zhao, 2017. "Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms," Energies, MDPI, vol. 10(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1427-:d:112194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Hai & Kim, Eun Soo & Nowakowski, Gary & Mauer, Erik & Bernitsas, Michael M., 2016. "Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions," Renewable Energy, Elsevier, vol. 99(C), pages 936-959.
    2. Kong, Qiaoling & Ma, Jie & Xia, Dongying, 2010. "Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy," Renewable Energy, Elsevier, vol. 35(4), pages 771-779.
    3. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    4. Ding, Lin & Zhang, Li & Bernitsas, Michael M. & Chang, Che-Chun, 2016. "Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control," Renewable Energy, Elsevier, vol. 85(C), pages 1246-1259.
    5. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    6. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    7. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidya Chandran & Sekar M. & Sheeja Janardhanan & Varun Menon, 2018. "Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power," Energies, MDPI, vol. 11(10), pages 1-23, September.
    2. Zhaoyong Mao & Fuliang Zhao, 2017. "Structure Optimization of a Vibration Suppression Device for Underwater Moored Platforms Using CFD and Neural Network," Complexity, Hindawi, vol. 2017, pages 1-21, December.
    3. Xuanlin Peng & Jianzhong Zhou & Chu Zhang & Ruhai Li & Yanhe Xu & Diyi Chen, 2017. "An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    2. Zhang, Baoshou & Mao, Zhaoyong & Song, Baowei & Ding, Wenjun & Tian, Wenlong, 2018. "Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM," Energy, Elsevier, vol. 144(C), pages 218-231.
    3. Gu, Mengfan & Song, Baowei & Zhang, Baoshou & Mao, Zhaoyong & Tian, Wenlong, 2020. "The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder," Renewable Energy, Elsevier, vol. 151(C), pages 931-945.
    4. Zhang, Baoshou & Li, Boyang & Fu, Song & Mao, Zhaoyong & Ding, Wenjun, 2022. "Vortex-Induced Vibration (VIV) hydrokinetic energy harvesting based on nonlinear damping," Renewable Energy, Elsevier, vol. 195(C), pages 1050-1063.
    5. Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.
    6. Li, Weijie & Zhang, Dahai & Shi, Xiaofeng, 2024. "Research on the impact of system parameter combinations on flow-induced vibration power generation characteristics based on exploratory data analysis," Renewable Energy, Elsevier, vol. 224(C).
    7. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    8. Dahai Zhang & Lei Feng & Hao Yang & Tianjiao Li & Hai Sun, 2020. "Vortex-Induced Vibration Characteristics of a PTC Cylinder with a Free Surface Effect," Energies, MDPI, vol. 13(4), pages 1-19, February.
    9. Lin Ding & Qunfeng Zou & Li Zhang & Haibo Wang, 2018. "Research on Flow-Induced Vibration and Energy Harvesting of Three Circular Cylinders with Roughness Strips in Tandem," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
    11. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    12. Zhang, Baoshou & Li, Boyang & Fu, Song & Ding, Wenjun & Mao, Zhaoyong, 2022. "Experimental investigation of the effect of high damping on the VIV energy converter near the free surface," Energy, Elsevier, vol. 244(PA).
    13. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    14. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    16. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    17. Kim, Eun Soo & Sun, Hai & Park, Hongrae & Shin, Sung-chul & Chae, Eun Jung & Ouderkirk, Ryan & Bernitsas, Michael M., 2021. "Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Yanfang Lv & Liping Sun & Michael M. Bernitsas & Mengjie Jiang & Hai Sun, 2021. "Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data," Energies, MDPI, vol. 14(4), pages 1-24, February.
    19. Zhang, Baoshou & Wang, Keh-Han & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2018. "Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion," Energy, Elsevier, vol. 165(PA), pages 949-964.
    20. Peng Liao & Jiyang Fu & Wenyong Ma & Yuan Cai & Yuncheng He, 2021. "Study on the Efficiency and Dynamic Characteristics of an Energy Harvester Based on Flexible Structure Galloping," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1427-:d:112194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.