IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1240-d109088.html
   My bibliography  Save this article

Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea

Author

Listed:
  • Seung-Chul Kim

    (Department of Architectural Engineering, Hanbat National University, Daejeon Metropolitan City 34158, Korea)

  • Jong-Ho Yoon

    (Department of Architectural Engineering, Hanbat National University, Daejeon Metropolitan City 34158, Korea)

  • Ru-Da Lee

    (Department of Architectural Engineering, Hanbat National University, Daejeon Metropolitan City 34158, Korea)

Abstract

(1) Background: The application of high insulation to a building envelope helps reduce the heating load, but increases the cooling load. Evaluating the installation of high insulation glazing to buildings in climate zones with four distinct seasons, as in the case of South Korea, is very important; (2) Methods: This study compared the heating energy performance of four types of glazing, inside vacuum double glazing, outside vacuum double glazing, single vacuum glazing, and low-e double glazing, with fixed low-e coating positions on the inside of the room in a mock-up chamber under the same conditions. The annual energy consumption according to the building type was analyzed using a simulation; (3) Results: As the insulation performance of building envelopes has increased, the energy saving rate of inside vacuum double glazing has been increased further in office buildings. In residential buildings, the energy saving rate of inside vacuum double glazing with a low SHGC (solar heat gain coefficient) has become higher than that of outside vacuum double glazing; (4) Conclusions: Since the effects of SHGC on the energy saving rates are greater in high insulation buildings, SHGC should be considered carefully when selecting glazing in climate zones with distinct winter and summer seasons.

Suggested Citation

  • Seung-Chul Kim & Jong-Ho Yoon & Ru-Da Lee, 2017. "Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea," Energies, MDPI, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1240-:d:109088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuce, Erdem & Cuce, Pinar Mert, 2016. "Vacuum glazing for highly insulating windows: Recent developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1345-1357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Szyszka, 2020. "Experimental Evaluation of the Heat Balance of an Interactive Glass Wall in A Heating Season," Energies, MDPI, vol. 13(3), pages 1-16, February.
    2. Ljubomir Jankovic & Silvio Carta, 2021. "BioZero—Designing Nature-Inspired Net-Zero Building," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    3. Jaesung Park & Myunghwan Oh & Chul-sung Lee, 2019. "Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method," Energies, MDPI, vol. 12(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanghoon Baek & Sangchul Kim, 2020. "Potential Effects of Vacuum Insulating Glazing Application for Reducing Greenhouse Gas Emission (GHGE) from Apartment Buildings in the Korean Capital Region," Energies, MDPI, vol. 13(11), pages 1-15, June.
    2. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    3. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    4. Cuce, Pinar Mert & Cuce, Erdem, 2017. "Toward cost-effective and energy-efficient heat recovery systems in buildings: Thermal performance monitoring," Energy, Elsevier, vol. 137(C), pages 487-494.
    5. Jae Kyung Kim & Young Shin Kim & Euy Sik Jeon, 2019. "Experimental Study on Flat-Glass Heating and Edge-Sealing Using Multiple Microwave Sources," Energies, MDPI, vol. 12(22), pages 1-13, November.
    6. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    7. Gao, Datong & Gao, Guangtao & Cao, Jingyu & Zhong, Shuai & Ren, Xiao & Dabwan, Yousef N. & Hu, Maobin & Jiao, Dongsheng & Kwan, Trevor Hocksun & Pei, Gang, 2020. "Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature," Applied Energy, Elsevier, vol. 269(C).
    8. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    9. Patricia Aguilera-Benito & Sheila Varela-Lujan & Carolina Piña-Ramirez, 2021. "Thermal Behavior in Glass Houses through the Analysis of Scale Models," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    10. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    12. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    13. Wang, Julian (Jialiang) & Shi, Donglu, 2017. "Spectral selective and photothermal nano structured thin films for energy efficient windows," Applied Energy, Elsevier, vol. 208(C), pages 83-96.
    14. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    15. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    16. Lyu, Yuan-Li & Liu, Wen-Jie & Su, Hua & Wu, Xuan, 2019. "Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates," Energy, Elsevier, vol. 175(C), pages 353-364.
    17. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    18. Uetsuji, Yasutomo & Yasuda, Yuta & Yamauchi, Shugo & Matsushima, Eiji & Adachi, Maki & Fuji, Masayoshi & Ito, Hirokazu, 2021. "Multiscale study on thermal insulating effect of a hollow silica-coated polycarbonate window for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Pataro, Igor M.L. & Gil, Juan D. & Guzmán, José L. & Berenguel, Manuel & Lemos, João M., 2023. "Hierarchical control based on a hybrid nonlinear predictive strategy for a solar-powered absorption machine facility," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1240-:d:109088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.