IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp487-494.html
   My bibliography  Save this article

Toward cost-effective and energy-efficient heat recovery systems in buildings: Thermal performance monitoring

Author

Listed:
  • Cuce, Pinar Mert
  • Cuce, Erdem

Abstract

Recent studies show that it is possible to reduce heating or cooling demand of a building as using heat recovery systems. Heat recovery technology is basically utilised to mitigate the heat loss, and hence energy consumption due to HVAC. Within the scope of this study, thermal comfort analyses of a test house integrated with a novel polycarbonate heat exchanger are conducted. At pre and post-retrofit case, temperature, relative humidity and CO2 measurements are carried out for a test period of one week. The results indicate that the internal CO2 concentration is not at desirable range due to lack of ventilation in the test house at the pre-retrofit case. However, following the integration of the novel ventilation system into the test house, CO2 concentration is found to be varying notably from 350 to 400 ppm which corresponds to the actual comfort conditions for indoor environments. It is also concluded from the results that the average relative humidity inside the test house at the post-retrofit case is found to be 57%, which is in the desired range whereas it is considerably high before retrofitting.

Suggested Citation

  • Cuce, Pinar Mert & Cuce, Erdem, 2017. "Toward cost-effective and energy-efficient heat recovery systems in buildings: Thermal performance monitoring," Energy, Elsevier, vol. 137(C), pages 487-494.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:487-494
    DOI: 10.1016/j.energy.2017.02.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Velasco Gómez, Eloy & Tejero González, Ana & Rey Martínez, Francisco Javier, 2012. "Experimental characterisation of an indirect evaporative cooling prototype in two operating modes," Applied Energy, Elsevier, vol. 97(C), pages 340-346.
    2. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    3. Saffa B. Riffat & Erdem Cuce, 2011. "A review on hybrid photovoltaic/thermal collectors and systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 212-241, June.
    4. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    5. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    6. Cuce, Erdem & Cuce, Pinar Mert, 2016. "Vacuum glazing for highly insulating windows: Recent developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1345-1357.
    7. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    8. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    9. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tushar, Wayes & Lan, Lan & Withanage, Chathura & Sng, Hui En Karen & Yuen, Chau & Wood, Kristin L. & Saha, Tapan Kumar, 2020. "Exploiting design thinking to improve energy efficiency of buildings," Energy, Elsevier, vol. 197(C).
    2. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    3. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    4. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    5. Li, Hao & Zhang, Tao & Zhang, Ji & Guan, Bowen & Liu, Xiaohua & Nakazawa, Takema & Fang, Lin & Tanaka, Toshio, 2023. "Investigation of energy recovery performance and frost risk of membrane enthalpy exchanger applied in cold climates," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    2. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    3. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    4. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    5. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    6. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    7. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    8. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    9. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    10. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    11. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    12. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    13. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    14. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    15. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    16. Kim, Hyeyoung & House, Lisa A. & KIm, Tae-Kyun, 2016. "Consumer perceptions of climate change and willingness to pay for mandatory implementation of low carbon labels: the case of South Korea," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), October.
    17. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    18. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    19. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    20. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:487-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.