IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p476-d94766.html
   My bibliography  Save this article

A Novel Caving Model of Overburden Strata Movement Induced by Coal Mining

Author

Listed:
  • Dongjing Xu

    (State Key Laboratory of Coal Resource and Safe Mining, China University of Mining & Technology, Beijing 100083, China
    100083, China)

  • Suping Peng

    (State Key Laboratory of Coal Resource and Safe Mining, China University of Mining & Technology, Beijing 100083, China
    100083, China)

  • Shiyao Xiang

    (100083, China)

  • Yunlan He

    (State Key Laboratory of Coal Resource and Safe Mining, China University of Mining & Technology, Beijing 100083, China)

Abstract

The broken pattern of the overburden strata induced by mining has a non-ignorable effect on overlying strata movement, failure, and safety in mining production. To study the caving pattern of overlying strata and determine the calculation method of fracture pathway parameters due to roof caving induced by coal mining, the trapezoidal broken models were developed to explain and prevent water leakage, and even water inrush, during the mining process. By incorporating the variation of the volume expansion coefficient, a connection among the parameters of the fracture pathways and fracture angles, face width, and mining height could be established, which shows that the larger the degree of the fracture angle is, the smaller the value of the volume expansion coefficient and face width is with a relatively larger mining height. This relationship was also used to determine the eventual evolution configuration of the trapezoidal broken model. The presented approaches may help us to better understand the movement of overburden strata and provide an idea to help settle conflicts related to fracture space calculations induced by coal mining.

Suggested Citation

  • Dongjing Xu & Suping Peng & Shiyao Xiang & Yunlan He, 2017. "A Novel Caving Model of Overburden Strata Movement Induced by Coal Mining," Energies, MDPI, vol. 10(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:476-:d:94766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    2. Željko Vukelić & Evgen Dervarič & Jurij Šporin & Goran Vižintin, 2016. "The Development of Dewatering Predictions of the Velenje Coalmine," Energies, MDPI, vol. 9(9), pages 1-9, August.
    3. Wei Zhang & Dong-Sheng Zhang & Li-Xin Wu & Hong-Zhi Wang, 2014. "On-Site Radon Detection of Mining-induced Fractures from Overlying Strata to the Surface: A Case Study of the Baoshan Coal Mine in China," Energies, MDPI, vol. 7(12), pages 1-25, December.
    4. Chang, J. & Leung, Dennis Y. C. & Wu, C. Z. & Yuan, Z. H., 2003. "A review on the energy production, consumption, and prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 453-468, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tianhao & Xu, Dongjing & Shi, Longqing & Qu, Linyan & Ji, Kaiming, 2022. "Trapezoidal collapse model to calculate the height of the overburden collapse zone in coal seam mining: An example from Guo'Jiahe Coal Mine, Western China," Energy, Elsevier, vol. 256(C).
    2. Qingxiang Huang & Yanpeng He & Jian Cao, 2019. "Experimental Investigation on Crack Development Characteristics in Shallow Coal Seam Mining in China," Energies, MDPI, vol. 12(7), pages 1-16, April.
    3. Weiyong Lu & Changchun He & Xin Zhang, 2020. "Height of overburden fracture based on key strata theory in longwall face," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    4. Xueyi Yu & Chi Mu & Dongdong Zhang, 2020. "Assessment of Land Reclamation Benefits in Mining Areas Using Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Hengjie Luan & Yujing Jiang & Huili Lin & Guofeng Li, 2018. "Development of a New Gob-Side Entry-Retaining Approach and Its Application," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    6. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Erhu Bai & Wenbing Guo & Yi Tan & Mingjie Guo & Peng Wen & Zhiqiang Liu & Zhibao Ma & Weiqiang Yang, 2022. "Regional Division and Its Criteria of Mining Fractures Based on Overburden Critical Failure," Sustainability, MDPI, vol. 14(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Dong-Sheng Zhang & Li-Xin Wu & Hong-Zhi Wang, 2014. "On-Site Radon Detection of Mining-induced Fractures from Overlying Strata to the Surface: A Case Study of the Baoshan Coal Mine in China," Energies, MDPI, vol. 7(12), pages 1-25, December.
    2. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    3. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    4. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    5. Ju Wang & Tongnan Li & Zhuoqiong Li & Chunsheng Fang, 2022. "Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    6. Zaman, Khalid & Khan, Muhammad Mushtaq & Ahmad, Mehboob & Rustam, Rabiah, 2012. "The relationship between agricultural technology and energy demand in Pakistan," Energy Policy, Elsevier, vol. 44(C), pages 268-279.
    7. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    8. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    9. Cherni, Judith A. & Kentish, Joanna, 2007. "Renewable energy policy and electricity market reforms in China," Energy Policy, Elsevier, vol. 35(7), pages 3616-3629, July.
    10. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    11. Lijun Wang & Haizhong An & Xiaohua Xia & Xiaojia Liu & Xiaoqi Sun & Xuan Huang, 2014. "Generating Moving Average Trading Rules on the Oil Futures Market with Genetic Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, May.
    12. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    13. Duan, Xiaoli & Jiang, Yong & Wang, Beibei & Zhao, Xiuge & Shen, Guofeng & Cao, Suzhen & Huang, Nan & Qian, Yan & Chen, Yiting & Wang, Limin, 2014. "Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS)," Applied Energy, Elsevier, vol. 136(C), pages 692-703.
    14. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    15. Khattak, Naeem Ur Rehman Khattak & Hussain, Anwar Hussain, 2009. "Determinants of Gas Energy Consumption in Pakistan: An Econometric Analysis (1971-2006)," MPRA Paper 41993, University Library of Munich, Germany.
    16. Li Li & Yalin Lei & Dongyang Pan, 2015. "Economic and environmental evaluation of coal production in China and policy implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1125-1141, June.
    17. Gerui Li & Yalin Lei & Jianping Ge & Sanmang Wu, 2017. "The Empirical Relationship between Mining Industry Development and Environmental Pollution in China," IJERPH, MDPI, vol. 14(3), pages 1-20, March.
    18. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    19. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2021. "System dynamics approach in determining coal utilization scenario in Indonesia," Resources Policy, Elsevier, vol. 73(C).
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:476-:d:94766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.