IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i5p1402-1418.html
   My bibliography  Save this article

Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues

Author

Listed:
  • Liu, H.
  • Jiang, G.M.
  • Zhuang, H.Y.
  • Wang, K.J.

Abstract

As the largest developing country in the world, China is urgently in short of energy and natural resources. However, biological resources such as crop residues are burnt in the field, which cause serious environmental pollution. Still it is not clear how much storage and potential of these huge crop residues are in China. This paper firstly reported the distribution, utilization structure and potential of crop biomass and provided the tangible information of crop residues in rural China through careful collecting and recalculating data. From 1995 to 2005, China produces some 630 million tons of crop residues per year, 50% of which comes from east and central south of China. The amount of crop residues is 1.3 times of the total yield of crops, 2 times of the total fodder of grassland, which covers 41% of China's territory. Crop residues of corn, wheat and rice amounted to 239, 137 and 116 million tons, respectively, accounting for nearly 80% of the total crop residues. Unfortunately, the utilizing structure is seriously improper for such abundant biomass resources. Although 23% of the crop residues are used for forage, 4% for industry materials and 0.5% for biogas, the large parts are used with lower efficiency or wasted, with 37% being directly combusted by farmers, 15% lost during collection and the rest 20.5% discarded or directly burnt in the field. Reasonable adjustment of the utilizing pattern and popularization of the recycling agriculture are essential out-ways for residues, with the development of the forage industry being the breakthrough point. We suggested that utilizing the abandoned 20.5% of the total residues for forage and combining agriculture and stock raising can greatly improve the farm system and cut down fertilizer pollution. Through the development of forage industries, the use efficiency of crop residues could be largely enhanced. Commercializing and popularizing technologies of biomass gasification and liquefaction might be substitute solutions of China's energy shortage.

Suggested Citation

  • Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:5:p:1402-1418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00030-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Yinlong & Ma, Xiao & Chen, Xining & Cheng, Yibin & Baris, Enis & Ezzati, Majid, 2006. "Exposure to indoor air pollution from household energy use in rural China: The interactions of technology, behavior, and knowledge in health risk management," Social Science & Medicine, Elsevier, vol. 62(12), pages 3161-3176, June.
    2. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    3. Islam, Mazharul & Fartaj, Amir & Ting, David S. -K., 2004. "Current utilization and future prospects of emerging renewable energy applications in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 493-519, December.
    4. Kishore, V. V. N. & Bhandari, Preety M. & Gupta, Pratul, 2004. "Biomass energy technologies for rural infrastructure and village power--opportunities and challenges in the context of global climate change concerns," Energy Policy, Elsevier, vol. 32(6), pages 801-810, April.
    5. Shi, Tian, 2002. "Ecological agriculture in China: bridging the gap between rhetoric and practice of sustainability," Ecological Economics, Elsevier, vol. 42(3), pages 359-368, September.
    6. Chang, J. & Leung, Dennis Y. C. & Wu, C. Z. & Yuan, Z. H., 2003. "A review on the energy production, consumption, and prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 453-468, October.
    7. Leung, Dennis Y. C. & Yin, X. L. & Wu, C. Z., 2004. "A review on the development and commercialization of biomass gasification technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 565-580, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    2. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    3. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    4. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    5. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    6. AkpInar, Adem & Kömürcü, Murat Ihsan & Kankal, Murat & Özölçer, Ismail HakkI & Kaygusuz, Kamil, 2008. "Energy situation and renewables in Turkey and environmental effects of energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2013-2039, October.
    7. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    8. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    9. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    10. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    11. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    12. Yasser Maklad, 2014. "Sizing and Costing Optimisation of a Typical Wind/PV Hybrid Electricity Generation System for a Typical Residential Building in Urban Armidale NSW, Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 163-168.
    13. Li, Lu & Shi, Zhi-Hua & Yin, Wei & Zhu, Dun & Ng, Sai Leung & Cai, Chong-Fa & Lei, A-Lin, 2009. "A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China," Ecological Modelling, Elsevier, vol. 220(23), pages 3439-3447.
    14. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    15. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    16. Valentine, Scott Victor, 2010. "Canada's constitutional separation of (wind) power," Energy Policy, Elsevier, vol. 38(4), pages 1918-1930, April.
    17. Khattak, Naeem Ur Rehman Khattak & Hussain, Anwar Hussain, 2009. "Determinants of Gas Energy Consumption in Pakistan: An Econometric Analysis (1971-2006)," MPRA Paper 41993, University Library of Munich, Germany.
    18. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.
    19. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    20. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:5:p:1402-1418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.