IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p102-d125197.html
   My bibliography  Save this article

Influence of Spatial Relationships between Key Strata on the Height of Mining-Induced Fracture Zone: A Case Study of Thick Coal Seam Mining

Author

Listed:
  • Peng Li

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Xufeng Wang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    The Jiangsu Laboratory of Mining-Induced Seismicity Monitoring, China University of Mining & Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining, China University of Mining & Technology, Xuzhou 221116, China)

  • Wenhao Cao

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Dongsheng Zhang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China)

  • Dongdong Qin

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Hongzhi Wang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

Abstract

The behavior of the overburden of working face 20104 at the Wangjialing coal mine was investigated using borehole imaging. The measured height of the conductive fracture zone (CFZ) in the overburden, 148 m, is significantly different from the height that is predicted by an empirical formula. The spatial relationships between key strata (KS) required for their fracturing and their influence on the CFZ’s height were analyzed. The results demonstrate that the spatial relationships between adjacent KS are a major factor behind the abnormal increase in the height of CFZ relative to the coal seam. The height of linkage (HoL) between KS was introduced and an equation for calculating this height was proposed. The study found that the fracturing of a KS could induce fracturing of the adjacent KS above it if their height difference was smaller than the HoL between them. Otherwise, the fractures resulting from the lower KS would terminate at the bottom of the higher KS. When the location of a high KS satisfies certain requirement, the spatial linkage between adjacent KS will allow for the conductive fractures arising in a lower KS to propagate through the high KS as well as the strata controlled by it, thus increasing the height of CFZ in overburden.

Suggested Citation

  • Peng Li & Xufeng Wang & Wenhao Cao & Dongsheng Zhang & Dongdong Qin & Hongzhi Wang, 2018. "Influence of Spatial Relationships between Key Strata on the Height of Mining-Induced Fracture Zone: A Case Study of Thick Coal Seam Mining," Energies, MDPI, vol. 11(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:102-:d:125197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Zhang & Dong-Sheng Zhang & Li-Xin Wu & Hong-Zhi Wang, 2014. "On-Site Radon Detection of Mining-induced Fractures from Overlying Strata to the Surface: A Case Study of the Baoshan Coal Mine in China," Energies, MDPI, vol. 7(12), pages 1-25, December.
    2. Jinfeng Ju & Jialin Xu & Jingmin Xu, 2017. "A Case Study of Surface Borehole Wall Dislocation Induced by Top-Coal Longwall Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Gao & Yingchun Li & Qingyuan He, 2022. "Determination of Fractured Water-Conducting Zone Height Based on Microseismic Monitoring: A Case Study in Weiqiang Coalmine, Shaanxi, China," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Zhang & Shenggen Cao & Lixin Lan & Rui Gao & Hao Yan, 2017. "Analysis of Development Pattern of a Water-Flowing Fissure Zone in Shortwall Block Mining," Energies, MDPI, vol. 10(5), pages 1-13, May.
    2. Yaokun Fu & Jianxuan Shang & Zhenqi Hu & Pengyu Li & Kun Yang & Chao Chen & Jiaxin Guo & Dongzhu Yuan, 2021. "Ground Fracture Development and Surface Fracture Evolution in N00 Method Shallowly Buried Thick Coal Seam Mining in an Arid Windy and Sandy Area: A Case Study of the Ningtiaota Mine (China)," Energies, MDPI, vol. 14(22), pages 1-18, November.
    3. Qingxiang Huang & Yanpeng He & Jian Cao, 2019. "Experimental Investigation on Crack Development Characteristics in Shallow Coal Seam Mining in China," Energies, MDPI, vol. 12(7), pages 1-16, April.
    4. Yun Zhang & Shenggen Cao & Rui Gao & Shuai Guo & Lixin Lan, 2018. "Prediction of the Heights of the Water-Conducting Fracture Zone in the Overlying Strata of Shortwall Block Mining Beneath Aquifers in Western China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    5. Timofey Leshukov & Aleksey Larionov & Konstantin Legoshchin & Yuriy Lesin & Svetlana Yakovleva, 2020. "The Assessment of Radon Emissions as Results of the Soil Technogenic Disturbance," IJERPH, MDPI, vol. 17(24), pages 1-11, December.
    6. Xueyi Yu & Chi Mu & Dongdong Zhang, 2020. "Assessment of Land Reclamation Benefits in Mining Areas Using Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    7. Dongjing Xu & Suping Peng & Shiyao Xiang & Yunlan He, 2017. "A Novel Caving Model of Overburden Strata Movement Induced by Coal Mining," Energies, MDPI, vol. 10(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:102-:d:125197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.