Learning-Based Adaptive Imputation Methodwith kNN Algorithm for Missing Power Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen, Wen & Zhou, Kaile & Yang, Shanlin & Wu, Cheng, 2017. "Data quality of electricity consumption data in a smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 98-105.
- Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu Liu & Lingfeng Xuan & Dehuang Gong & Xinlin Xie & Zhongwen Liang & Dongguo Zhou, 2025. "A WGAN-GP Approach for Data Imputation in Photovoltaic Power Prediction," Energies, MDPI, vol. 18(5), pages 1-16, February.
- Kim, Jangkyum & Oh, Hyeontaek & Choi, Jun Kyun, 2022. "Learning based cost optimal energy management model for campus microgrid systems," Applied Energy, Elsevier, vol. 311(C).
- Soyeong Park & Seungwook Yoon & Byungtak Lee & Seokkap Ko & Euiseok Hwang, 2020. "Probabilistic Forecasting Based Joint Detection and Imputation of Clustered Bad Data in Residential Electricity Loads," Energies, MDPI, vol. 14(1), pages 1-13, December.
- Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
- Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
- Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
- Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
- Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
- Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
- Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
- Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
- el Bouhaddani, Said & Uh, Hae-Won & Hayward, Caroline & Jongbloed, Geurt & Houwing-Duistermaat, Jeanine, 2018. "Probabilistic partial least squares model: Identifiability, estimation and application," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 331-346.
- Stefan Sommer, 2019. "An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 37-62, February.
- Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2014. "A generative model and a generalized trust region Newton method for noise reduction," Computational Optimization and Applications, Springer, vol. 57(1), pages 129-165, January.
- Gen Li & Sungkyu Jung, 2017. "Incorporating covariates into integrated factor analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 73(4), pages 1433-1442, December.
- Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
- Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
- Frydman, Carola & Papanikolaou, Dimitris, 2018.
"In search of ideas: Technological innovation and executive pay inequality,"
Journal of Financial Economics, Elsevier, vol. 130(1), pages 1-24.
- Carola Frydman & Dimitris Papanikolaou, 2015. "In Search of Ideas: Technological Innovation and Executive Pay Inequality," NBER Working Papers 21795, National Bureau of Economic Research, Inc.
More about this item
Keywords
missing data; power data; imputation; kNN algorithm; learning; smart meter; energy system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1668-:d:115875. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.