IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v10y2022i8p188-d876327.html
   My bibliography  Save this article

Machine Learning for Credit Risk in the Reactive Peru Program: A Comparison of the Lasso and Ridge Regression Models

Author

Listed:
  • Luis Alberto Geraldo-Campos

    (Dirección de Investigación, Universidad Privada Peruano Alemana, Chorrillos, Lima 15064, Peru)

  • Juan J. Soria

    (Facultad de Ingeniería de Sistemas y Electrónica, Universidad Tecnológica del Perú, Villa el Salvador, Lima 15842, Peru)

  • Tamara Pando-Ezcurra

    (Dirección de Investigación, Universidad Privada Peruano Alemana, Chorrillos, Lima 15064, Peru)

Abstract

COVID-19 has caused an economic crisis in the business world, leaving limitations in the continuity of the payment chain, with companies resorting to credit access. This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19. A multivariate regression analysis was applied with four regressor variables (economic sector, granting entity, amount covered, and department) and one predictor (risk level), with a population of 501,298 companies benefiting from the program, under the CRISP-DM methodology oriented especially for data mining projects, with artificial intelligence techniques under the machine learning Lasso and Ridge regression models, with econometric algebraic mathematical verification to compare and validate the predictive models using SPSS, Jamovi, R Studio, and MATLAB software. The results revealed a better Lasso regression model ( λ 60 = 0.00038; RMSE = 0.3573685) that optimally predicted the level of risk compared to the Ridge regression model ( λ 100 = 0.00910; RMSE = 0.3573812) and the least squares model with algebraic mathematics, which corroborates that the Lasso regression model is the best predictive model to detect the level of credit risk of the Reactiva Peru Program. The best predictive model for detecting the level of corporate credit risk is the Lasso regression model.

Suggested Citation

  • Luis Alberto Geraldo-Campos & Juan J. Soria & Tamara Pando-Ezcurra, 2022. "Machine Learning for Credit Risk in the Reactive Peru Program: A Comparison of the Lasso and Ridge Regression Models," Economies, MDPI, vol. 10(8), pages 1-21, July.
  • Handle: RePEc:gam:jecomi:v:10:y:2022:i:8:p:188-:d:876327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/10/8/188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/10/8/188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahelegbey, Daniel Felix & Giudici, Paolo & Hadji-Misheva, Branka, 2019. "Factorial Network Models To Improve P2P Credit Risk Management," MPRA Paper 92633, University Library of Munich, Germany.
    2. Matthieu Crozet & Banu Demir & Beata Javorcik, 2022. "International Trade and Letters of Credit: A Double-Edged Sword in Times of Crises," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(2), pages 185-211, June.
    3. Félix Corredera-Catalán & Filippo Pietro & Antonio Trujillo-Ponce, 2021. "Post-COVID-19 SME financing constraints and the credit guarantee scheme solution in Spain," Journal of Banking Regulation, Palgrave Macmillan, vol. 22(3), pages 250-260, September.
    4. Shanker, M. & Hu, M. Y. & Hung, M. S., 1996. "Effect of data standardization on neural network training," Omega, Elsevier, vol. 24(4), pages 385-397, August.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Liu, Ya & Qiu, Buhui & Wang, Teng, 2021. "Debt rollover risk, credit default swap spread and stock returns: Evidence from the COVID-19 crisis," Journal of Financial Stability, Elsevier, vol. 53(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jimin & Ho, Choy Yeing (Chloe) & Shan, Yuan George, 2024. "Does cybersecurity risk stifle corporate innovation activities?," International Review of Financial Analysis, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    4. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    5. Niculaescu, Corina E. & Sangiorgi, Ivan & Bell, Adrian R., 2023. "Does personal experience with COVID-19 impact investment decisions? Evidence from a survey of US retail investors," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    8. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    9. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    10. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    11. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    14. Matteo Picozzi & Antonio Giovanni Iaccarino, 2021. "Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network," Forecasting, MDPI, vol. 3(1), pages 1-20, January.
    15. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    16. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    17. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    18. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    20. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:10:y:2022:i:8:p:188-:d:876327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.