IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v5y2017i2p21-d99406.html
   My bibliography  Save this article

Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting

Author

Listed:
  • Benedikt Schamberger

    (Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
    These authors contributed equally to this work.)

  • Lutz F. Gruber

    (Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
    These authors contributed equally to this work.)

  • Claudia Czado

    (Department of Mathematics, Technical University of Munich, 85748 Garching, Germany)

Abstract

Factor modeling is a popular strategy to induce sparsity in multivariate models as they scale to higher dimensions. We develop Bayesian inference for a recently proposed latent factor copula model, which utilizes a pair copula construction to couple the variables with the latent factor. We use adaptive rejection Metropolis sampling (ARMS) within Gibbs sampling for posterior simulation: Gibbs sampling enables application to Bayesian problems, while ARMS is an adaptive strategy that replaces traditional Metropolis-Hastings updates, which typically require careful tuning. Our simulation study shows favorable performance of our proposed approach both in terms of sampling efficiency and accuracy. We provide an extensive application example using historical data on European financial stocks that forecasts portfolio Value at Risk (VaR) and Expected Shortfall (ES).

Suggested Citation

  • Benedikt Schamberger & Lutz F. Gruber & Claudia Czado, 2017. "Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting," Econometrics, MDPI, vol. 5(2), pages 1-23, May.
  • Handle: RePEc:gam:jecnmx:v:5:y:2017:i:2:p:21-:d:99406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/5/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/5/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:taf:jnlasa:v:108:y:2013:i:502:p:656-665 is not listed on IDEAS
    2. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    3. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    4. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    5. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    6. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    7. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    8. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    9. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    10. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    11. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    12. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cte:wsrepe:27652 is not listed on IDEAS
    2. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    3. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    4. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    5. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    6. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    7. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    8. Rezitis, Anthony N. & Rokopanos, Andreas & Tsionas, Mike G., 2021. "Investigating dynamic price co-movements in the international milk market using copulas: The role of trade agreements," Economic Modelling, Elsevier, vol. 95(C), pages 215-227.
    9. Verhoijsen Alex & Krupskiy Pavel, 2022. "Fast inference methods for high-dimensional factor copulas," Dependence Modeling, De Gruyter, vol. 10(1), pages 270-289, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Bi-factor and Second-Order Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 132-157, March.
    2. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    3. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    4. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    5. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    6. Igan, Deniz & Kabundi, Alain & Nadal De Simone, Francisco & Pinheiro, Marcelo & Tamirisa, Natalia, 2011. "Housing, credit, and real activity cycles: Characteristics and comovement," Journal of Housing Economics, Elsevier, vol. 20(3), pages 210-231, September.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. repec:dgr:rugccs:200312 is not listed on IDEAS
    9. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    10. Semih Emre Cekin & Menelik S. Geremew & Hardik Marfatia, 2019. "Monetary policy co-movement and spillover of shocks among BRICS economies," Applied Economics Letters, Taylor & Francis Journals, vol. 26(15), pages 1253-1263, September.
    11. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
    12. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    13. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    14. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    15. Fantazzini , Dean, 2009. "Econometric Analysis of Financial Data in Risk Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 14(2), pages 100-127.
    16. Egon Smeral & Michael Wüger, 2004. "Does Complexity Matter? Methods for Improving Forecasting Accuracy in Tourism," WIFO Working Papers 225, WIFO.
    17. Robert Inklaar & Jan Jacobs & Ward Romp, 2005. "Business Cycle Indexes: Does a Heap of Data Help?," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(3), pages 309-336.
    18. Owyang, Michael T. & Rapach, David E. & Wall, Howard J., 2009. "States and the business cycle," Journal of Urban Economics, Elsevier, vol. 65(2), pages 181-194, March.
    19. Dennis J. Fixler & Jeremy J. Nalewaik, 2007. "News, noise, and estimates of the \"true\" unobserved state of the economy," Finance and Economics Discussion Series 2007-34, Board of Governors of the Federal Reserve System (U.S.).
    20. Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021. "Recursive estimation in large panel data models: Theory and practice," Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
    21. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:5:y:2017:i:2:p:21-:d:99406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.