IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v4y2016i4p47-d84106.html
   My bibliography  Save this article

Subset-Continuous-Updating GMM Estimators for Dynamic Panel Data Models

Author

Listed:
  • Richard A. Ashley

    (Department of Economics, Virginia Tech, Blacksburg, VA 24060, USA)

  • Xiaojin Sun

    (Department of Economics and Finance, University of Texas at El Paso, El Paso, TX 79968, USA)

Abstract

The two-step GMM estimators of Arellano and Bond (1991) and Blundell and Bond (1998) for dynamic panel data models have been widely used in empirical work; however, neither of them performs well in small samples with weak instruments. The continuous-updating GMM estimator proposed by Hansen, Heaton, and Yaron (1996) is in principle able to reduce the small-sample bias, but it involves high-dimensional optimizations when the number of regressors is large. This paper proposes a computationally feasible variation on these standard two-step GMM estimators by applying the idea of continuous-updating to the autoregressive parameter only, given the fact that the absolute value of the autoregressive parameter is less than unity as a necessary requirement for the data-generating process to be stationary. We show that our subset-continuous-updating method does not alter the asymptotic distribution of the two-step GMM estimators, and it therefore retains consistency. Our simulation results indicate that the subset-continuous-updating GMM estimators outperform their standard two-step counterparts in finite samples in terms of the estimation accuracy on the autoregressive parameter and the size of the Sargan-Hansen test.

Suggested Citation

  • Richard A. Ashley & Xiaojin Sun, 2016. "Subset-Continuous-Updating GMM Estimators for Dynamic Panel Data Models," Econometrics, MDPI, vol. 4(4), pages 1-13, November.
  • Handle: RePEc:gam:jecnmx:v:4:y:2016:i:4:p:47-:d:84106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/4/4/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/4/4/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    3. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    4. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    5. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. Donald, Stephen G. & Newey, Whitney K., 2000. "A jackknife interpretation of the continuous updating estimator," Economics Letters, Elsevier, vol. 67(3), pages 239-243, June.
    9. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    10. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    11. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.
    2. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    3. Samina RIAZ & Venus Khim-Sen LIEW & Rossazana Bt Ab RAHIM, 2019. "The Impact of Business Cycle on Pakistani Banks Capital Buffer and Portfolio Risk," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 57-71, March.
    4. Adrian Mehic, 2021. "FDML versus GMM for Dynamic Panel Models with Roots Near Unity," JRFM, MDPI, vol. 14(9), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    2. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    3. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    4. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    5. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.
    6. Chirok Han & Hyoungjong Kim, 2023. "Dynamic panel GMM estimators with improved finite sample properties using parametric restrictions for dimension reduction," Empirical Economics, Springer, vol. 64(6), pages 2589-2610, June.
    7. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    8. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    9. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    10. Alexandra Lavinia Horobeț & Irina Mnohoghitnei & Emanuela Marinela Luminița Zlatea & Alexandra Smedoiu-Popoviciu, 2023. "Determinants of E-Government Use in the European Union: An Empirical Analysis," Societies, MDPI, vol. 13(6), pages 1-17, June.
    11. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    12. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    13. Sandrine Lardic & Virginie Terraza, 2019. "Financial Ratios Analysis in Determination of Bank Performance in the German Banking Sector," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 22-47.
    14. Jeffrey Kouton & Rafiou R. Bétila & Moïse Lawin, 2021. "The Impact of ICT Development on Health Outcomes in Africa: Does Economic Freedom Matter?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 1830-1869, December.
    15. Lehkonen, Heikki & Heimonen, Kari, 2015. "Democracy, political risks and stock market performance," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 77-99.
    16. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    17. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    18. Zheng, Xinye & Li, Fanghua & Song, Shunfeng & Yu, Yihua, 2013. "Central government's infrastructure investment across Chinese regions: A dynamic spatial panel data approach," China Economic Review, Elsevier, vol. 27(C), pages 264-276.
    19. Tadadjeu, Sosson & Njangang, Henri & Asongu, Simplice A. & Kamguia, Brice, 2023. "Natural resources, child mortality and governance quality in African countries," Resources Policy, Elsevier, vol. 83(C).
    20. Hak Yeung & Jürgen Huber, 2022. "Further Evidence on China’s B&R Impact on Host Countries’ Quality of Institutions," Sustainability, MDPI, vol. 14(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:4:y:2016:i:4:p:47-:d:84106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.