IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v4y2016i1p10-d64901.html
   My bibliography  Save this article

Sequentially Adaptive Bayesian Learning for a Nonlinear Model of the Secular and Cyclical Behavior of US Real GDP

Author

Listed:
  • John Geweke

    (Economics Discipline Group, School of Business, University of Technology Sydney, 14 - 28 Ultimo Road, Ultimo, NSW 2007, Australia)

Abstract

There is a one-to-one mapping between the conventional time series parameters of a third-order autoregression and the more interpretable parameters of secular half-life, cyclical half-life and cycle period. The latter parameterization is better suited to interpretation of results using both Bayesian and maximum likelihood methods and to expression of a substantive prior distribution using Bayesian methods. The paper demonstrates how to approach both problems using the sequentially adaptive Bayesian learning algorithm and sequentially adaptive Bayesian learning algorithm (SABL) software, which eliminates virtually of the substantial technical overhead required in conventional approaches and produces results quickly and reliably. The work utilizes methodological innovations in SABL including optimization of irregular and multimodal functions and production of the conventional maximum likelihood asymptotic variance matrix as a by-product.

Suggested Citation

  • John Geweke, 2016. "Sequentially Adaptive Bayesian Learning for a Nonlinear Model of the Secular and Cyclical Behavior of US Real GDP," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
  • Handle: RePEc:gam:jecnmx:v:4:y:2016:i:1:p:10-:d:64901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/4/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/4/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Geweke, "undated". "Posterior Simulators in Econometrics," Computing in Economics and Finance 1996 _019, Society for Computational Economics.
    2. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
    3. Geweke, John, 1988. "The Secular and Cyclical Behavior of Real GDP in 19 OECD Countries, 1957-1983," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(4), pages 479-486, October.
    4. Garland Durham & John Geweke, 2014. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 1-44, Emerald Group Publishing Limited.
    5. Enlu Zhou & Xi Chen, 2013. "Sequential Monte Carlo simulated annealing," Journal of Global Optimization, Springer, vol. 55(1), pages 101-124, January.
    6. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    2. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    3. Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
    4. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    5. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    6. Mariolis Theodore & Konstantakis Konstantinos N. & Michaelides Panayotis G. & Tsionas Efthymios G., 2019. "A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-16, February.
    7. Marko Mlikota & Frank Schorfheide, 2022. "Sequential Monte Carlo With Model Tempering," Papers 2202.07070, arXiv.org.
    8. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    9. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    10. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    11. Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
    12. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    13. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    14. Waggoner, Daniel F. & Wu, Hongwei & Zha, Tao, 2016. "Striated Metropolis–Hastings sampler for high-dimensional models," Journal of Econometrics, Elsevier, vol. 192(2), pages 406-420.
    15. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    16. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    17. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    18. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    19. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    20. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:4:y:2016:i:1:p:10-:d:64901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.