IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v8y2017i2p31-d121617.html
   My bibliography  Save this article

Challenges in Aquatic Physical Habitat Assessment: Improving Conservation and Restoration Decisions for Contemporary Watersheds

Author

Listed:
  • Jason A. Hubbart

    (Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA
    Institute of Water Security and Science, West Virginia University, Morgantown, WV 26506, USA)

  • Elliott Kellner

    (Institute of Water Security and Science, West Virginia University, Morgantown, WV 26506, USA
    School of Natural Resources, University of Missouri, Columbia, MO 25611, USA)

  • Paul Kinder

    (Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA
    Natural Resource Analysis Center, West Virginia University, Morgantown, WV 26506, USA)

  • Kirsten Stephan

    (Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA)

Abstract

Attribution of in-stream biological impairment to anthropogenic activities and prioritization for restoration and/or conservation can be challenging in contemporary mixed-land-use watersheds. Critical information necessary to improve decision making can be costly and labor intensive, and thus unobtainable for many municipalities. A reduced cost, rapid stream physical habitat assessment (rPHA) can yield information that, when paired with land use data may reveal causal patterns in aquatic physical habitat degradation, and thus assist targeting sites for restoration. However, a great deal of work is needed to reduce associated costs, and validate the potential of rPHA for documenting fine-scale incremental change in physical habitat conditions in complex contemporary watersheds. The following commentary serves to draw attention to rPHA challenges and research needs including (but not limited to) field-based validation and optimization of new remote sensing technologies, evaluation of the accuracy and representativeness of rapid vegetation survey methods, refinement of analytical methods, and consideration of legacy land use impacts and hydrologic system evolution in rPHA results interpretation. Considering the value of rPHA-generated data for improvement of watershed resource management, such challenges constitute timely, high-impact research opportunities for investigators wishing to advance complex, contemporary aquatic ecosystem management.

Suggested Citation

  • Jason A. Hubbart & Elliott Kellner & Paul Kinder & Kirsten Stephan, 2017. "Challenges in Aquatic Physical Habitat Assessment: Improving Conservation and Restoration Decisions for Contemporary Watersheds," Challenges, MDPI, vol. 8(2), pages 1-11, December.
  • Handle: RePEc:gam:jchals:v:8:y:2017:i:2:p:31-:d:121617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/8/2/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/8/2/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason A. Hubbart & Kirsten Stephan & Fritz Petersen & Zachary Heck & Jason Horne & B. Jean Meade, 2020. "Challenges for the Island of Barbuda: A Distinct Cultural and Ecological Island Ecosystem at the Precipice of Change," Challenges, MDPI, vol. 11(1), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    2. Pradeep Mishra & Zhi-Qiang Deng, 2009. "Sediment TMDL Development for the Amite River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 839-852, March.
    3. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    4. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.
    5. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    6. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    7. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    8. Shishant Gupta & Chandra Shekhar Prasad Ojha & Vijay P. Singh & Adebayo J. Adeloye & Sanjay K. Jain, 2023. "Pixel-Based Soil Loss Estimation and Prioritization of North-Western Himalayan Catchment Based on Revised Universal Soil Loss Equation (RUSLE)," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    9. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    10. Matthew Yarrow & Antonio Tironi & Alejandro Ramírez & Víctor Marín, 2008. "An Applied Assessment Model to Evaluate the Socioeconomic Impact of Water Quality Regulations in Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1531-1543, November.
    11. Kamel Khanchoul & Mahmoud Tourki, 2020. "Assessment and Mapping of Soil Sensitivity to Erosion Using GIS in Mellegue Catchment, Northeast of Algeria," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(1), pages 8-14, February.
    12. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    13. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    14. Sudipto Halder & Abhishek RoyChowdhury & Sayanti Kar & Debdas Ray & Gupinath Bhandari, 2024. "Critical Watershed Prioritization through Multi-Criteria Decision-Making Techniques and Geographical Information System Integration for Watershed Management," Sustainability, MDPI, vol. 16(8), pages 1-27, April.
    15. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    16. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    17. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    18. Dhananjay Deshmukh & Umesh Chaube & Sanjay Tignath, 2011. "Development of Geomorphological Permeability Index (GPI) for Assessment of Ground Water Availability and Watershed Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3747-3768, November.
    19. Ahsan Raza & Hella Ahrends & Muhammad Habib-Ur-Rahman & Thomas Gaiser, 2021. "Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops," Land, MDPI, vol. 10(4), pages 1-35, April.
    20. Ferreira, Vera & Panagopoulos, Thomas, 2012. "Predicting soil erosion risk at the Alqueva dam watershed," Spatial and Organizational Dynamics Discussion Papers 2012-4, CIEO-Research Centre for Spatial and Organizational Dynamics, University of Algarve.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:8:y:2017:i:2:p:31-:d:121617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.