IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i5p89-d226828.html
   My bibliography  Save this article

Can Hairy Vetch Cover Crop Affects Arsenic Accumulation in Vegetable Crops?

Author

Listed:
  • Roberto Mancinelli

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis snc, 01100 Viterbo, Italy)

  • Emanuele Radicetti

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis snc, 01100 Viterbo, Italy)

  • Rosario Muleo

    (Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis snc, 01100 Viterbo, Italy)

  • Sara Marinari

    (Department for Innovation in Biological, Agro-Food and Forest System (DIBAF), University of Tuscia, Via San Camillo de Lellis snc., 01100 Viterbo, Italy)

  • Ilenia Bravo

    (Department of Economics and Law, Territorial and Products Analysis Laboratory (LAMeT), University of Cassino and Southern Lazio, Via Sant’Angelo, Località Folcara, Cassino 03043, Italy)

  • Patrizia Papetti

    (Department of Economics and Law, Territorial and Products Analysis Laboratory (LAMeT), University of Cassino and Southern Lazio, Via Sant’Angelo, Località Folcara, Cassino 03043, Italy)

Abstract

Agricultural practices greatly influence the bioavailability of heavy metals. Arsenic (As) is a heavy metal identified as a concern due to its potential impact on human health. Two-year field experiments were performed to evaluate the effect of cropping system on As accumulation in tomato, sweet pepper and zucchini. The treatments were: (i) conventional system based on common practices of the area; and (ii) alternative systems based on cultivation of hairy vetch ( Vicia villosa Roth.) in no-tillage before vegetable crops. Randomized block design with three replications was adopted. Soil and plant samples (fruits, leaves, stems and roots) were collected at crop harvesting. Plant samples were weighed and analyzed to evaluate As content. Soil chemical analyses were performed to evaluate the total organic carbon and nitrogen content. The As accumulation observed in plant samples of tomato, sweet pepper and zucchini resulted always low in the alternative system, except in fruits where As accumulation was similar between the systems. The increase of soil organic matter observed in alternative system probably caused a reduction of As accumulation into crop tissues. Therefore, hairy vetch cultivation in no-tillage could be a suitable strategy to reduce the As uptake of vegetable crops in geogenic contaminated soils.

Suggested Citation

  • Roberto Mancinelli & Emanuele Radicetti & Rosario Muleo & Sara Marinari & Ilenia Bravo & Patrizia Papetti, 2019. "Can Hairy Vetch Cover Crop Affects Arsenic Accumulation in Vegetable Crops?," Agriculture, MDPI, vol. 9(5), pages 1-10, April.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:5:p:89-:d:226828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/5/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/5/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    2. Garba, Ismail I. & Bell, Lindsay W. & Chauhan, Bhagirath S. & Williams, Alwyn, 2024. "Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems," Agricultural Systems, Elsevier, vol. 214(C).
    3. Oliveira, Eduardo & Leuthard, Jasmin & Tobias, Silvia, 2019. "Spatial planning instruments for cropland protection in Western European countries," Land Use Policy, Elsevier, vol. 87(C).
    4. Fanny Boeraeve & Marc Dufrêne & Nicolas Dendoncker & Amandine Dupire & Grégory Mahy, 2020. "How Are Landscapes under Agroecological Transition Perceived and Appreciated? A Belgian Case Study," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    5. Andrzej Sałata & Gaetano Pandino & Halina Buczkowska & Sara Lombardo, 2020. "Influence of Catch Crops on Yield and Chemical Composition of Winter Garlic Grown for Bunch Harvesting," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    6. Erin M. Silva & Virginia M. Moore, 2017. "Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    7. Tatiana Kaletová & Luis Loures & Rui Alexandre Castanho & Elena Aydin & José Telo da Gama & Ana Loures & Amélie Truchy, 2019. "Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    8. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    9. Ramcharan, Amanda M. & Richard, Tom L., 2017. "Carbon and nitrogen environmental trade-offs of winter rye cellulosic biomass in the Chesapeake Watershed," Agricultural Systems, Elsevier, vol. 156(C), pages 85-94.
    10. Andrzej Sałata & Halina Buczkowska & Rafał Papliński & Anna Rutkowska, 2021. "The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs," Agriculture, MDPI, vol. 11(5), pages 1-23, April.
    11. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    12. Alissa White & Joshua W. Faulkner & David Conner & Lindsay Barbieri & E. Carol Adair & Meredith T. Niles & V. Ernesto Mendez & Cameron R. Twombly, 2021. "Measuring the Supply of Ecosystem Services from Alternative Soil and Nutrient Management Practices: A Transdisciplinary, Field-Scale Approach," Sustainability, MDPI, vol. 13(18), pages 1-32, September.
    13. Matthias Böldt & Friedhelm Taube & Iris Vogeler & Thorsten Reinsch & Christof Kluß & Ralf Loges, 2021. "Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
    14. Capmourteres, Virginia & Adams, Justin & Berg, Aaron & Fraser, Evan & Swanton, Clarence & Anand, Madhur, 2018. "Precision conservation meets precision agriculture: A case study from southern Ontario," Agricultural Systems, Elsevier, vol. 167(C), pages 176-185.
    15. Shackelford, Gorm E. & Kelsey, Rodd & Dicks, Lynn V., 2019. "Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean," Land Use Policy, Elsevier, vol. 88(C).
    16. Meyer, Nicolas & Bergez, Jacques-Eric & Constantin, Julie & Belleville, Paul & Justes, Eric, 2020. "Cover crops reduce drainage but not always soil water content due to interactions between rainfall distribution and management," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Yoder, Landon & Houser, Matthew & Bruce, Analena & Sullivan, Abigail & Farmer, James, 2021. "Are climate risks encouraging cover crop adoption among farmers in the southern Wabash River Basin?," Land Use Policy, Elsevier, vol. 102(C).
    18. Roberto Mancinelli & Rosario Muleo & Sara Marinari & Emanuele Radicetti, 2019. "How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation," Agriculture, MDPI, vol. 9(7), pages 1-12, July.
    19. Andrea Cecchin & Ghasideh Pourhashem & Russ W. Gesch & Yesuf A. Mohammed & Swetabh Patel & Andrew W. Lenssen & Marisol T. Berti, 2021. "The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Hoque, Mohammad Mainul, 2015. "Essays on natural resources and labor economics," ISU General Staff Papers 201501010800005583, Iowa State University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:5:p:89-:d:226828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.