IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i2p37-d206471.html
   My bibliography  Save this article

Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity

Author

Listed:
  • Xenia Specka

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

  • Claas Nendel

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

  • Ralf Wieland

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany)

Abstract

Sensitivity analysis (SA) is often applied to evaluate the behavior of ecological models in which the integrated soil and crop processes often vary over time. In this study, the time dependence of the parameter sensitivity of a process-based agro-ecosystem model was analyzed for various sites and model outputs. We applied the Morris screening and extended FAST methods by calculating daily sensitivity measures. By analyzing the daily elementary effects using the Morris method, we were able to identify more sensitive parameters compared with the original approach. The temporal extension of the extended FAST method revealed changes in parameter sensitivity during the simulation time. In addition to the dynamic parameter sensitivity, we noticed different relationships between parameter sensitivity and simulation time. The temporal SA performed in this study improves our understanding of the investigated model’s behavior and demonstrates the importance of analyzing the sensitivity of ecological models over the entire simulation time.

Suggested Citation

  • Xenia Specka & Claas Nendel & Ralf Wieland, 2019. "Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity," Agriculture, MDPI, vol. 9(2), pages 1-29, February.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:2:p:37-:d:206471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/2/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/2/37/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simons-Legaard, Erin & Legaard, Kasey & Weiskittel, Aaron, 2015. "Predicting aboveground biomass with LANDIS-II: A global and temporal analysis of parameter sensitivity," Ecological Modelling, Elsevier, vol. 313(C), pages 325-332.
    2. Confalonieri, R. & Bellocchi, G. & Bregaglio, S. & Donatelli, M. & Acutis, M., 2010. "Comparison of sensitivity analysis techniques: A case study with the rice model WARM," Ecological Modelling, Elsevier, vol. 221(16), pages 1897-1906.
    3. Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
    4. Dzotsi, K.A. & Basso, B. & Jones, J.W., 2013. "Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT," Ecological Modelling, Elsevier, vol. 260(C), pages 62-76.
    5. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    6. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    7. Nendel, C. & Berg, M. & Kersebaum, K.C. & Mirschel, W. & Specka, X. & Wegehenkel, M. & Wenkel, K.O. & Wieland, R., 2011. "The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics," Ecological Modelling, Elsevier, vol. 222(9), pages 1614-1625.
    8. Song, Xiaodong & Bryan, Brett A. & Paul, Keryn I. & Zhao, Gang, 2012. "Variance-based sensitivity analysis of a forest growth model," Ecological Modelling, Elsevier, vol. 247(C), pages 135-143.
    9. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    10. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    11. Makowski, David & Naud, Cédric & Jeuffroy, Marie-Hélène & Barbottin, Aude & Monod, Hervé, 2006. "Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1142-1147.
    12. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2012. "Quantifying plasticity in simulation models," Ecological Modelling, Elsevier, vol. 225(C), pages 159-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bregaglio, Simone & Giustarini, Laura & Suarez, Eloy & Mongiano, Gabriele & De Gregorio, Tommaso, 2020. "Analysing the behaviour of a hazelnut simulation model across growing environments via sensitivity analysis and automatic calibration," Agricultural Systems, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    2. Gao, Lei & Bryan, Brett A., 2016. "Incorporating deep uncertainty into the elementary effects method for robust global sensitivity analysis," Ecological Modelling, Elsevier, vol. 321(C), pages 1-9.
    3. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.
    4. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    5. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    6. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    7. Auder, Benjamin & De Crecy, Agnès & Iooss, Bertrand & Marquès, Michel, 2012. "Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 122-131.
    8. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    9. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    10. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    11. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    12. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    13. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    14. Tadiello, Tommaso & Gabbrielli, Mara & Botta, Marco & Acutis, Marco & Bechini, Luca & Ragaglini, Giorgio & Fiorini, Andrea & Tabaglio, Vincenzo & Perego, Alessia, 2023. "A new module to simulate surface crop residue decomposition: Description and sensitivity analysis," Ecological Modelling, Elsevier, vol. 480(C).
    15. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Ben Touhami, Haythem & Lardy, Romain & Barra, Vincent & Bellocchi, Gianni, 2013. "Screening parameters in the Pasture Simulation model using the Morris method," Ecological Modelling, Elsevier, vol. 266(C), pages 42-57.
    17. Dong, Ming & Bryan, Brett A. & Connor, Jeffery D. & Nolan, Martin & Gao, Lei, 2015. "Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling," Ecosystem Services, Elsevier, vol. 15(C), pages 63-74.
    18. Myrgiotis, Vasileios & Rees, Robert M. & Topp, Cairistiona F.E. & Williams, Mathew, 2018. "A systematic approach to identifying key parameters and processes in agroecosystem models," Ecological Modelling, Elsevier, vol. 368(C), pages 344-356.
    19. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.
    20. Barr, John & Rabitz, Herschel, 2023. "Kernel-based global sensitivity analysis obtained from a single data set," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:2:p:37-:d:206471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.