IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i16p1897-1906.html
   My bibliography  Save this article

Comparison of sensitivity analysis techniques: A case study with the rice model WARM

Author

Listed:
  • Confalonieri, R.
  • Bellocchi, G.
  • Bregaglio, S.
  • Donatelli, M.
  • Acutis, M.

Abstract

The considerable complexity often included in biophysical models leads to the need of specifying a large number of parameters and inputs, which are available with various levels of uncertainty. Also, models may behave counter-intuitively, particularly when there are nonlinearities in multiple input–output relationships. Quantitative knowledge of the sensitivity of models to changes in their parameters is hence a prerequisite for operational use of models. This can be achieved using sensitivity analysis (SA) via methods which differ for specific characteristics, including computational resources required to perform the analysis. Running SA on biophysical models across several contexts requires flexible and computationally efficient SA approaches, which must be able to account also for possible interactions among parameters. A number of SA experiments were performed on a crop model for the simulation of rice growth (Water Accounting Rice Model, WARM) in Northern Italy. SAs were carried out using the Morris method, three regression-based methods (Latin hypercube sampling, random and Quasi-Random, LpTau), and two methods based on variance decomposition: Extended Fourier Amplitude Sensitivity Test (E-FAST) and Sobol’, with the latter adopted as benchmark. Aboveground biomass at physiological maturity was selected as reference output to facilitate the comparison of alternative SA methods. Rankings of crop parameters (from the most to the least relevant) were generated according to sensitivity experiments using different SA methods and alternate parameterizations for each method, and calculating the top-down coefficient of concordance (TDCC) as measure of agreement between rankings. With few exceptions, significant TDCC values were obtained both for different parameterizations within each method and for the comparison of each method to the Sobol’ one. The substantial stability observed in the rankings seem to indicate that, for a crop model of average complexity such as WARM, resource intensive SA methods could not be needed to identify most relevant parameters. In fact, the simplest among the SA methods used (i.e., Morris method) produced results comparable to those obtained by methods more computationally expensive.

Suggested Citation

  • Confalonieri, R. & Bellocchi, G. & Bregaglio, S. & Donatelli, M. & Acutis, M., 2010. "Comparison of sensitivity analysis techniques: A case study with the rice model WARM," Ecological Modelling, Elsevier, vol. 221(16), pages 1897-1906.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:16:p:1897-1906
    DOI: 10.1016/j.ecolmodel.2010.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010002371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Confalonieri, Roberto & Acutis, Marco & Bellocchi, Gianni & Donatelli, Marcello, 2009. "Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice," Ecological Modelling, Elsevier, vol. 220(11), pages 1395-1410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    2. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    3. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    4. Masseroni, Daniele & Gangi, Fabiola & Galli, Andrea & Ceriani, Rodolfo & De Gaetani, Carlo & Gandolfi, Claudio, 2022. "Behind the efficiency of border irrigation: Lesson learned in Northern Italy," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    6. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2010. "A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions," Ecological Modelling, Elsevier, vol. 221(6), pages 960-964.
    7. Pagani, Valentina & Guarneri, Tommaso & Busetto, Lorenzo & Ranghetti, Luigi & Boschetti, Mirco & Movedi, Ermes & Campos-Taberner, Manuel & Garcia-Haro, Francisco Javier & Katsantonis, Dimitrios & Stav, 2019. "A high-resolution, integrated system for rice yield forecasting at district level," Agricultural Systems, Elsevier, vol. 168(C), pages 181-190.
    8. Bonfante, A. & Basile, A. & Acutis, M. & De Mascellis, R. & Manna, P. & Perego, A. & Terribile, F., 2010. "SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy," Agricultural Water Management, Elsevier, vol. 97(7), pages 1051-1062, July.
    9. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    10. Shrestha, Shailesh & Ciaian, Pavel & Himics, Mihay & Van Doorslaer, Benjamin, 2013. "Impacts of Climate Change on EU Agriculture," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 16(2), pages 1-16, September.
    11. Shrestha, Shailesh & Himics, Mihaly & Van Doorslaer, Benjamin & Ciaian, Pavel, 2012. "EU wide regional impacts of climate change," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122546, European Association of Agricultural Economists.
    12. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    13. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2012. "Quantifying plasticity in simulation models," Ecological Modelling, Elsevier, vol. 225(C), pages 159-166.
    14. Pin Wang & Zhao Zhang & Xiao Song & Yi Chen & Xing Wei & Peijun Shi & Fulu Tao, 2014. "Temperature variations and rice yields in China: historical contributions and future trends," Climatic Change, Springer, vol. 124(4), pages 777-789, June.
    15. Li, Runwei & Wei, Chenyang & Afroz, Mahnaz Dil & Lyu, Jun & Chen, Gang, 2021. "A GIS-based framework for local agricultural decision-making and regional crop yield simulation," Agricultural Systems, Elsevier, vol. 193(C).
    16. Bruelle, Guillaume & Affholder, François & Abrell, Thomas & Ripoche, Aude & Dusserre, Julie & Naudin, Krishna & Tittonell, Pablo & Rabeharisoa, Lilia & Scopel, Eric, 2017. "Can conservation agriculture improve crop water availability in an erratic tropical climate producing water stress? A simple model applied to upland rice in Madagascar," Agricultural Water Management, Elsevier, vol. 192(C), pages 281-293.
    17. Zhang, Jing & Chen, Yi & Zhang, Zhao, 2020. "A remote sensing-based scheme to improve regional crop model calibration at sub-model component level," Agricultural Systems, Elsevier, vol. 181(C).
    18. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    19. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    20. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:16:p:1897-1906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.