IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v107y2012icp122-131.html
   My bibliography  Save this article

Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations

Author

Listed:
  • Auder, Benjamin
  • De Crecy, Agnès
  • Iooss, Bertrand
  • Marquès, Michel

Abstract

To perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by a cpu time expensive computer code, a widely accepted methodology consists in first identifying the most influential uncertain inputs (by screening techniques), and then in replacing the cpu time expensive model by a cpu inexpensive mathematical function, called a metamodel. This paper extends this methodology to the functional output case, for instance when the model output variables are curves. The screening approach is based on the analysis of variance and principal component analysis of output curves. The functional metamodeling consists in a curve classification step, a dimension reduction step, then a classical metamodeling step. An industrial nuclear reactor application (dealing with uncertainties in the pressurized thermal shock analysis) illustrates all these steps.

Suggested Citation

  • Auder, Benjamin & De Crecy, Agnès & Iooss, Bertrand & Marquès, Michel, 2012. "Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 122-131.
  • Handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:122-131
    DOI: 10.1016/j.ress.2011.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iooss, Bertrand & Van Dorpe, François & Devictor, Nicolas, 2006. "Response surfaces and sensitivity analyses for an environmental model of dose calculations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1241-1251.
    2. Campbell, Katherine & McKay, Michael D. & Williams, Brian J., 2006. "Sensitivity analysis when model outputs are functions," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1468-1472.
    3. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    4. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    5. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wang, Xiaodi & Huang, Hengzhen, 2023. "Group symmetric Latin hypercube designs for symmetrical global sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    2. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    3. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Barr, John & Rabitz, Herschel, 2023. "Kernel-based global sensitivity analysis obtained from a single data set," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    6. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    7. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    8. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    10. Jeremy Rohmer, 2014. "Dynamic sensitivity analysis of long-running landslide models through basis set expansion and meta-modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 5-22, August.
    11. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
    12. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    13. Zhang, Kaichao & Lu, Zhenzhou & Cheng, Kai & Wang, Laijun & Guo, Yanling, 2020. "Global sensitivity analysis for multivariate output model and dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    15. Alexanderian, Alen & Gremaud, Pierre A. & Smith, Ralph C., 2020. "Variance-based sensitivity analysis for time-dependent processes," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Li, Min & Wang, Ruo-Qian & Jia, Gaofeng, 2020. "Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    18. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
    20. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:122-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.