IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i4p422-d1592872.html
   My bibliography  Save this article

Discrete Element Method Analysis of Soil Penetration Depth Affected by Spreading Speed in Drone-Seeded Rice

Author

Listed:
  • Kwon Joong Son

    (Department of Mechanical and Design Engineering, Hongik University, Sejong 30016, Republic of Korea)

Abstract

This research explores, using discrete element method (DEM) simulations, the behavior of rice seed infiltration into soil when it is deployed via unmanned aerial vehicle (UAV)-mounted systems. Five distinct sowing strategies were analyzed to evaluate their effectiveness in embedding seeds within paddy soil: gravitational drop, centrifugal spreading, airflow propulsion, pneumatic discharge, and pneumatic shooting. A two-step analysis was performed. Initially, the flight dynamics of rice seeds were modeled, and the influence of air and water drag forces were accounted for. Subsequently, soil penetration was simulated with DEM based on the material properties and contact parameters sourced from the existing literature. The results show that the pneumatic methods effectively penetrated the soil, with pneumatic shooting proving to be the most efficient due to its superior impact momentum. Conversely, the methods that failed to penetrate left seeds on the soil surface. These findings demonstrate the necessity to enhance UAV sowing technology to improve penetration depth while maintaining operational efficiency, and they also offer crucial insights for the progress of UAV applications in agriculture.

Suggested Citation

  • Kwon Joong Son, 2025. "Discrete Element Method Analysis of Soil Penetration Depth Affected by Spreading Speed in Drone-Seeded Rice," Agriculture, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:422-:d:1592872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/4/422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/4/422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Zeng & Chaopeng Chen & Wei Quan & Shuangpeng Xie & Fanggang Shi & Zitao Ma & Mingliang Wu, 2023. "Calibration Parameter of Soil Discrete Element Based on Area Difference Method," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    2. Weixing Zhao & Jieming Chou & Jiangnan Li & Yuan Xu & Yuanmeng Li & Yidan Hao, 2022. "Impacts of Extreme Climate Events on Future Rice Yields in Global Major Rice-Producing Regions," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    3. Anbumozhi, V. & Yamaji, E. & Tabuchi, T., 1998. "Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level," Agricultural Water Management, Elsevier, vol. 37(3), pages 241-253, September.
    4. Hao Zhou & Tienan Zhou & Xuezhen Wang & Lian Hu & Shengsheng Wang & Xiwen Luo & Jiangtao Ji, 2022. "Determination of Discrete Element Modelling Parameters of a Paddy Soil with a High Moisture Content (>40%)," Agriculture, MDPI, vol. 12(12), pages 1-9, November.
    5. Kwon Joong Son, 2023. "Mathematical Modeling of Collisional Heat Generation and Convective Heat Transfer Problem for Single Spherical Body in Oscillating Boundaries," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    2. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    3. Zeng, Linghe & Lesch, Scott M. & Grieve, Catherine M., 2003. "Rice growth and yield respond to changes in water depth and salinity stress," Agricultural Water Management, Elsevier, vol. 59(1), pages 67-75, March.
    4. Vandersypen, Klaartje & Bengaly, Kongotigui & Keita, Abdoulaye C.T. & Sidibe, Souleymane & Raes, Dirk & Jamin, Jean-Yves, 2006. "Irrigation performance at tertiary level in the rice schemes of the Office du Niger (Mali): Adequate water delivery through over-supply," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 144-152, May.
    5. Longbao Wang & Hanyu Yang & Zhinan Wang & Qingjie Wang & Caiyun Lu & Chao Wang & Jin He, 2025. "Calibration of DEM Polyhedron Model for Wheat Seed Based on Angle of Repose Test and Semi-Resolved CFD-DEM Coupling Simulation," Agriculture, MDPI, vol. 15(5), pages 1-20, February.
    6. Ryota Tsuchiya & Tasuku Kato & Jaehak Jeong & Jeffrey G. Arnold, 2018. "Development of SWAT-Paddy for Simulating Lowland Paddy Fields," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    7. Goulart, Rafael Ziani & Reichert, José Miguel & Rodrigues, Miriam Fernanda, 2020. "Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies," Agricultural Systems, Elsevier, vol. 177(C).
    8. Senlin Guan & Kimiyasu Takahashi & Keiko Nakano & Koichiro Fukami & Wonjae Cho, 2023. "Real-Time Kinematic Imagery-Based Automated Levelness Assessment System for Land Leveling," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    9. Playán, E. & Pérez-Coveta, O. & Marti­nez-Cob, A. & Herrero, J. & Garcia-Navarro, P. & Latorre, B. & Brufau, P. & Garcés, J., 2008. "Overland water and salt flows in a set of rice paddies," Agricultural Water Management, Elsevier, vol. 95(6), pages 645-658, June.
    10. Peizhao Zhong & Weiqing Jia & Wenwu Yang & Jianfei He & Erli Zhang & Dongyang Yu & Yuhang Xu & Jianpeng Chen & Feihu Peng & Guoxiang Zeng & Chen Zhang & Shiqi Zeng & Bo Gao & Haihai Pei & Zaiman Wang, 2024. "Calibration and Testing of Parameters for the Discrete Element Simulation of Soil Particles in Paddy Fields," Agriculture, MDPI, vol. 14(1), pages 1-15, January.
    11. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    13. Kwon Joong Son, 2025. "Mathematical Modeling of High-Energy Shaker Mill Process with Lumped Parameter Approach for One-Dimensional Oscillatory Ball Motion with Collisional Heat Generation," Mathematics, MDPI, vol. 13(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:422-:d:1592872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.