IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i1p80-d1558397.html
   My bibliography  Save this article

Assessment of Soil Organic and Inorganic Carbon Under Afforestation and Natural Vegetation Restoration Using Stable Carbon Isotope (δ 13 C) Measurements

Author

Listed:
  • Mengyao Wu

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China)

  • Yaru Zhao

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China)

  • Hui Li

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China)

  • Wenchang Ma

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China)

  • Yang Gao

    (Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China
    College of Forestry, Northwest A&F University, Yangling 712100, China)

Abstract

On the Loess Plateau, vast farmlands have suffered from severe land degradation and soil erosion. Afforestation and natural vegetation restoration are two main methods for ecological restoration on the degraded farmland in the last few decades. Previous studies have mainly investigated the effects of the two methods on soil organic carbon (SOC). However, few studies have focused on the influence of the two methods on soil inorganic carbon (SIC), which is the fundamental component of the local soil carbon pool. On the Loess Plateau, we measured SOC and SIC stocks, and the stable carbon isotope values of SOC and SIC (δ 13 C-SOC and δ 13 C-SIC) within 0–100 cm depth in an artificial forestland ( Robinia pseudoacacia , 27 years) and a neighboring abandoned farmland ( Poa annua and Bothriochloa ischaemum , 27 years). The results showed that SOC and SIC stocks at 0–100 cm in forestland were 23.43 Mg ha −1 and 16.89 Mg ha −1 higher than the abandoned farmland, respectively. The δ 13 C-SOC in topsoil was significantly ( p < 0.05) lower than the subsoil in both lands. The δ 13 C-SIC in forestland was significantly ( p < 0.05) lower than in abandoned farmland. The results indicated that afforestation is more suitable to conserve soil carbon than natural vegetation restoration on degraded farmland on the Loess Plateau. The forestland generated more pedogenic inorganic carbon than the abandoned farmland causing the difference in SIC stock between the two lands. Our findings highlight the importance of SIC, and the SIC may be more important than SOC in sequestrating soil carbon following vegetation restoration on the Loess Plateau.

Suggested Citation

  • Mengyao Wu & Yaru Zhao & Hui Li & Wenchang Ma & Yang Gao, 2025. "Assessment of Soil Organic and Inorganic Carbon Under Afforestation and Natural Vegetation Restoration Using Stable Carbon Isotope (δ 13 C) Measurements," Agriculture, MDPI, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:1:p:80-:d:1558397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/1/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/1/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    3. Kristof Dorau & Chris Bamminger & Daniel Koch & Tim Mansfeldt, 2022. "Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany," Climatic Change, Springer, vol. 170(1), pages 1-13, January.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    6. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    7. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    8. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Kaikai Cheng & Shuting Peng & Chao Li & Li Wen & Lingling Liu & Hanfang Luo & Jie Liu & Haiming Tang, 2024. "Effects of Long-Term Soil Tillage Practices on Soil Organic C Accumulation Characteristics in Double-Cropped Rice Paddy," Land, MDPI, vol. 13(12), pages 1-13, December.
    10. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    11. Damien Finn & Kerrilyn Catton & Marijke Heenan & Peter M. Kopittke & Diane Ouwerkerk & Athol V. Klieve & Ram C. Dalal, 2018. "Differential Gene Expression in the Model Actinomycete Streptomyces coelicolor A3(2) Supports Nitrogen Mining Dependent on the Plant Carbon to Nitrogen Ratio," Agriculture, MDPI, vol. 8(12), pages 1-10, December.
    12. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    13. Stavros D Veresoglou & Barry Thornton & George Menexes & Andreas P Mamolos & Demetrios S Veresoglou, 2012. "Soil Fertilization Leads to a Decline in Between-Samples Variability of Microbial Community δ13C Profiles in a Grassland Fertilization Experiment," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    14. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    15. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    16. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    17. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    18. Tipping, E. & Rowe, E.C. & Evans, C.D. & Mills, R.T.E. & Emmett, B.A. & Chaplow, J.S. & Hall, J.R., 2012. "N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition," Ecological Modelling, Elsevier, vol. 247(C), pages 11-26.
    19. Yajin Hu & Penghui Ma & Zhihao Yang & Siyuan Liu & Yingchao Li & Ling Li & Tongchao Wang & Kadambot H. M. Siddique, 2025. "The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis," Agriculture, MDPI, vol. 15(4), pages 1-19, February.
    20. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:1:p:80-:d:1558397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.