IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p870-d1405837.html
   My bibliography  Save this article

Comparative Effects of No-dig and Conventional Cultivation with Vermicompost Fertilization on Earthworm Community Parameters and Soil Physicochemical Condition

Author

Listed:
  • Anna Mazur-Pączka

    (Department of the Basis of Agriculture and Waste Management, Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland)

  • Kevin R. Butt

    (Ecological Engineering, University of Central Lancashire, Preston PR1 2HE, UK)

  • Mariola Garczyńska

    (Department of the Basis of Agriculture and Waste Management, Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland)

  • Marcin Jaromin

    (Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Avenue, 35-959 Rzeszow, Poland)

  • Edmund Hajduk

    (Department of Soil Science, Chemistry of Environment and Hydrology, Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, Zelwerowicza 8b, 35-601 Rzeszow, Poland)

  • Joanna Kostecka

    (Department of the Basis of Agriculture and Waste Management, Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland)

  • Grzegorz Pączka

    (Department of the Basis of Agriculture and Waste Management, Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland)

Abstract

Because of the numerous ecosystem services provided by soil, such as elemental cycling, food production, and water filtration and storage, this resource requires special protection to maintain total efficiency of these services. However, standard agricultural practices can have a degrading effect, not only on the physical and chemical properties of soil, but may also threaten soil invertebrate communities. Soil macrofauna, and earthworms in particular, play a critical role in soil ecosystems because their activities affect the availability of nutrients for plants, shape soil structure, and significantly impact organic matter dynamics. The present study was undertaken to determine the effects of two systems used in plant cultivation (no-dig and conventional digging). Both used vermicompost as an organic fertilizer and looked at selected characteristics of Lumbricidae groupings and the dynamics of selected soil physicochemical properties. This study was conducted over three years in the same area to ensure that the soil characteristics were the same. The NDG (no-dig) and DG (conventional digging) sites were prepared as appropriate with a perennial hay meadow (MW) used as a control site. An electrical extraction (octet) method was used to collect earthworms. The same six species of earthworm were found at each site: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), Octolasion lacteum (Örley), and Lumbricus terrestris (L.). Earthworm abundance and biomass were found to be significantly higher at the NDG site compared to DG (NDG > DG; abundance by 24% ( p < 0.05), biomass by 22% ( p < 0.05)). No significant differences between NDG and MW were shown. Moisture, temperature, and soil organic carbon content likely influenced the abundance and biomass of Lumbricidae. The NDG site showed significantly higher organic carbon and moisture content and significantly lower temperatures than the DG site. The average number of earthworms damaged by digging was 0.85 ind. m −2 , but did not significantly affect the other results. Overall, NDG is preferable to DG for enhancing the earthworm and physicochemical parameters of soil.

Suggested Citation

  • Anna Mazur-Pączka & Kevin R. Butt & Mariola Garczyńska & Marcin Jaromin & Edmund Hajduk & Joanna Kostecka & Grzegorz Pączka, 2024. "Comparative Effects of No-dig and Conventional Cultivation with Vermicompost Fertilization on Earthworm Community Parameters and Soil Physicochemical Condition," Agriculture, MDPI, vol. 14(6), pages 1-16, May.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:870-:d:1405837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Mazur-Pączka & Grzegorz Pączka & Mariola Garczyńska & Marcin Jaromin & Edmund Hajduk & Joanna Kostecka & Kevin R. Butt, 2023. "Effects of Energy Crop Monocultures and Sewage Sludge Fertiliser on Soils and Earthworm Community Attributes," Agriculture, MDPI, vol. 13(2), pages 1-12, January.
    2. R. Lal, 2009. "Soil degradation as a reason for inadequate human nutrition," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 45-57, February.
    3. S. Matula, 2003. "The influence of tillage treatments on water infiltration into soil profile," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 49(7), pages 298-306.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    3. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    4. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    5. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    8. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    9. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    10. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    11. Zhihai Yang & Amin W. Mugera & Ning Yin & Yumeng Wang, 2018. "Soil conservation practices and production efficiency of smallholder farms in Central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1517-1533, August.
    12. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    13. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    14. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    15. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    16. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    17. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    18. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    19. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    20. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:870-:d:1405837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.