IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p341-d1343048.html
   My bibliography  Save this article

The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater

Author

Listed:
  • Xurun Li

    (Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, Shandong Agricultural University, Taian 271018, China)

  • Zhao Li

    (Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China)

  • Weizhang Fu

    (College of Resources and Environment, Shandong Agricultural University, Taian 271018, China)

  • Fadong Li

    (Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China)

Abstract

The depth of shallow groundwater significantly influences crop growth and yield by altering the physicochemical properties of farmland soil profiles. Concurrently, shallow groundwater is subject to various changes, and it remains unclear how alterations in shallow groundwater depth within field soil impact soil physicochemical properties, crop yields, and the overall dynamics of groundwater transformations. To address these uncertainties, this study utilized a sample plot equipped with a volume lysimeter and implemented four distinct groundwater depths as treatment conditions: G0 (no groundwater depth), G1 (a groundwater depth of 40 cm), G2 (a groundwater depth of 70 cm), G3 (a groundwater depth of 110 cm), and G4 (a groundwater depth of 150 cm). This study was carried out on a weekly basis to monitor fluctuations in ion content in shallow groundwater and soil moisture after the summer maize harvest, and special attention was afforded to non-irrigation conditions. This study also scrutinized the distribution of salt and nutrients in soil profiles and assessed changes in summer maize yield. Very interesting findings were obtained by conducting the study. Firstly, the shallower the groundwater depth, the higher the water and salt content of the soil surface. Small, frequent rainfall events (precipitation ≤ 25 mm) facilitated the effective removal of salt from the soil surface. Despite increased rainfall contributing to salt ion dilution in groundwater, the risk of soil surface salinization increased at the surface level. Secondly, a linear relationship existed between groundwater depth and surface soil moisture and salt content. With every 10 cm increase in groundwater depth, the surface soil moisture and salt content decreased by 0.56% and 0.06 g/kg, respectively. Soil nutrients tended to accumulate in the surface layer, with nutrient content increasing with depth. However, C/N was not notably affected by groundwater depth. Thirdly, Na + and K + consistently dominated the soil surface. As soil salinity increased, the prevalence of Cl − and SO 4 2− increased, with the rate of SO 4 2− increase surpassing that of chlorine. HCO 3 − altered by rainfall served as an indicator of soil alkalization characteristics, while Na + and K + in soil, along with Cl − and SO 4 2− derived from groundwater, represented soil salt composition and salinization trends. Ultimately, under the conditions of this study, the most favorable groundwater depth for the growth of summer maize was determined to be 1.1 m. Analyzing the impact of different shallow groundwater depths on the physicochemical properties of farmland soil enhances our understanding of the mechanisms of interaction between groundwater and soil in agricultural ecosystems. This knowledge is instrumental in significantly improving the soil environment, thereby ensuring optimal crop yields.

Suggested Citation

  • Xurun Li & Zhao Li & Weizhang Fu & Fadong Li, 2024. "The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater," Agriculture, MDPI, vol. 14(3), pages 1-22, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:341-:d:1343048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Peiyue Li & Hui Qian & Jianhua Wu, 2018. "Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 337-353, May.
    3. Inge E. M. Graaf & Tom Gleeson & L. P. H. (Rens) van Beek & Edwin H. Sutanudjaja & Marc F. P. Bierkens, 2019. "Environmental flow limits to global groundwater pumping," Nature, Nature, vol. 574(7776), pages 90-94, October.
    4. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    5. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    6. Guo, Huaming & Li, Guanghe & Zhang, Dayi & Zhang, Xu & Lu, Chang'ai, 2006. "Effects of water table and fertilization management on nitrogen loading to groundwater," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 86-98, April.
    7. Yao, Rong-jiang & Yang, Jing-song & Zhang, Tong-juan & Hong, Li-zhou & Wang, Mao-wen & Yu, Shi-peng & Wang, Xiang-ping, 2014. "Studies on soil water and salt balances and scenarios simulation using SaltMod in a coastal reclaimed farming area of eastern China," Agricultural Water Management, Elsevier, vol. 131(C), pages 115-123.
    8. Ren, Baizhao & Dong, Shuting & Liu, Peng & Zhao, Bin & Zhang, Jiwang, 2016. "Ridge tillage improves plant growth and grain yield of waterlogged summer maize," Agricultural Water Management, Elsevier, vol. 177(C), pages 392-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    3. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    5. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    7. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    9. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Guoming Du & Tongbing Guo & Chen Ma, 2022. "Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain," Land, MDPI, vol. 11(9), pages 1-13, September.
    12. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Liu, Minghuan & Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2018. "Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 37-52.
    16. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    17. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    18. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    19. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Bai, Jianduo & Wang, Nan & Hu, Bifeng & Feng, Chunhui & Wang, Yuzhen & Peng, Jie & Shi, Zhou, 2023. "Integrating multisource information to delineate oasis farmland salinity management zones in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:341-:d:1343048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.