IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p2018-d1517303.html
   My bibliography  Save this article

Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review

Author

Listed:
  • Chinnu Raju

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

  • Sellaperumal Pazhanivelan

    (Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

  • Irene Vethamoni Perianadar

    (Horticultural College & Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

  • Ragunath Kaliaperumal

    (Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

  • N. K. Sathyamoorthy

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

  • Vaithiyanathan Sendhilvel

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India)

Abstract

Climate change is an emerging threat to global food and nutritional security. The tropical fruits such as mango, bananas, passionfruit, custard apples, and papaya are highly sensitive to weather changes especially; changes of monsoon onset and elevated temperature are influencing crop growth and production. There is a need for more specific studies concerning individual crops and regional variations. Long-term effects and interactions of weather parameters and increased concentration of greenhouse gases, especially carbon dioxide, with phenological stages of the plant, pests, and diseases remain understudied, while adaptation strategies require further exploration for comprehensive understanding and effective mitigation. Few researchers have addressed the issues on the effect of climate change on tropical fruits. This paper focuses on the impact of abiotic (temperature, rainfall, humidity, wind speed, evaporation, carbon dioxide concentration) and biotic (pest and pathogens dynamics) factors affecting the fruit crop ecosystem. These factors influence flowering, pollination, fruit set, fruit yield and quality. This review paper will help develop adaptive strategies, policy interventions and technological innovations aimed at mitigating the adverse effects of climate change on tropical fruit production and safeguarding global food and nutritional security.

Suggested Citation

  • Chinnu Raju & Sellaperumal Pazhanivelan & Irene Vethamoni Perianadar & Ragunath Kaliaperumal & N. K. Sathyamoorthy & Vaithiyanathan Sendhilvel, 2024. "Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review," Agriculture, MDPI, vol. 14(11), pages 1-19, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2018-:d:1517303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/2018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/2018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. Heba Elbasiouny & Hassan El-Ramady & Fathy Elbehiry & Vishnu D. Rajput & Tatiana Minkina & Saglara Mandzhieva, 2022. "Plant Nutrition under Climate Change and Soil Carbon Sequestration," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    4. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    5. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    6. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    7. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    8. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    9. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    10. Hassan El-Ramady & Peter Hajdú & Gréta Törős & Khandsuren Badgar & Xhensila Llanaj & Attila Kiss & Neama Abdalla & Alaa El-Dein Omara & Tamer Elsakhawy & Heba Elbasiouny & Fathy Elbehiry & Megahed Ame, 2022. "Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture," Sustainability, MDPI, vol. 14(14), pages 1-45, July.
    11. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    12. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    13. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    14. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    15. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    16. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    17. Pingping Tian & Yifu Liu & Mingzhen Sui & Jing Ou, 2022. "Prediction of Potential Habitats of Zanthoxylum armatum DC. and Their Changes under Climate Change," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    18. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    19. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    20. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2018-:d:1517303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.