IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1946-d1511102.html
   My bibliography  Save this article

Effect of Artificial Humic Acids Derived from Municipal Sludge on Plant Growth, Soil Fertility, and Dissolved Organic Matter

Author

Listed:
  • Rongting Ji

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Chenwei Liu

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Qiujin Xu

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Yue Zhang

    (China Civil Engineering Society Water Industry Association, Beijing 100012, China)

  • Mei Chen

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Longjiang Zhang

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Feilong Hu

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

Abstract

Due to its high nutrient utilization efficiency, liquid organic fertilizer has become a research hotspot in the field of agricultural planting. Artificial humic acids, which are near-nature products, can be deemed as a green liquid organic fertilizer, but few studies have been reported, which has limited their further application. In this study, artificial humic acids were derived from municipal sludge, and their effect on rice growth, soil fertility, and dissolved organic matter was investigated using multi-chamber root box experiments. The shoot and root biomass of rice can be significantly enhanced by artificial humic acids, and the heavy metal concentration in rice was within safe limits. Artificial humic acids can limit the decrease in soil pH, especially in the far-rhizosphere zone, and improve the distribution of nutrients in the rhizosphere, near-rhizosphere, and far-rhizosphere zones. The use of artificial humic acids led to a significant decrease in soil electrical conductivity. The dissolved organic carbon content in the root zone was significantly increased, and the fluorescence intensity of dissolved organic matter in the rhizosphere was significantly increased. The proportion of specific components of dissolved organic matter was just slightly changed in the rhizosphere and near-rhizosphere zones. Artificial humic acids promoted the humification of dissolved organic matter in the near-rhizosphere and far-rhizosphere zones. The findings indicate that the environmental impact of artificial humic acids is significantly different from conventional chemical fertilizers, and they show huge potential in the agriculture field.

Suggested Citation

  • Rongting Ji & Chenwei Liu & Qiujin Xu & Yue Zhang & Mei Chen & Longjiang Zhang & Feilong Hu, 2024. "Effect of Artificial Humic Acids Derived from Municipal Sludge on Plant Growth, Soil Fertility, and Dissolved Organic Matter," Agriculture, MDPI, vol. 14(11), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1946-:d:1511102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zehra Ekin, 2019. "Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture," Sustainability, MDPI, vol. 11(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Symanowicz & Rafał Toczko, 2023. "Brown Coal Waste in Agriculture and Environmental Protection: A Review," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    2. Wanda Wadas & Tomasz Dziugieł, 2020. "Quality of New Potatoes ( Solanum tuberosum L.) in Response to Plant Biostimulants Application," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    3. Koffi Djaman & Soum Sanogo & Komlan Koudahe & Samuel Allen & Aminou Saibou & Samuel Essah, 2021. "Characteristics of Organically Grown Compared to Conventionally Grown Potato and the Processed Products: A Review," Sustainability, MDPI, vol. 13(11), pages 1-26, June.
    4. Nuraly Akimbekov & Xiaohui Qiao & Ilya Digel & Gulzhamal Abdieva & Perizat Ualieva & Azhar Zhubanova, 2020. "The Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield," Agriculture, MDPI, vol. 10(5), pages 1-17, May.
    5. Lucy Reed & Bernard R. Glick, 2023. "The Recent Use of Plant-Growth-Promoting Bacteria to Promote the Growth of Agricultural Food Crops," Agriculture, MDPI, vol. 13(5), pages 1-24, May.
    6. Krystyna Zarzyńska & Cezary Trawczyński & Milena Pietraszko, 2023. "Environmental and Agronomical Factors Limiting Differences in Potato Yielding between Organic and Conventional Production System," Agriculture, MDPI, vol. 13(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1946-:d:1511102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.