IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1900-d1507478.html
   My bibliography  Save this article

UAV-Based Multispectral Winter Wheat Growth Monitoring with Adaptive Weight Allocation

Author

Listed:
  • Lulu Zhang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xiaowen Wang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Huanhuan Zhang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Bo Zhang

    (School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jin Zhang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xinkang Hu

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xintong Du

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jianrong Cai

    (School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Weidong Jia

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Chundu Wu

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China
    Jiangsu Province and Education Ministry Cosponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China)

Abstract

Comprehensive growth index (CGI) more accurately reflects crop growth conditions than single indicators, which is crucial for precision irrigation, fertilization, and yield prediction. However, many current studies overlook the relationships between different growth parameters and their varying contributions to yield, leading to overlapping information and lower accuracy in monitoring crop growth. Therefore, this study focuses on winter wheat and constructs a comprehensive growth monitoring index (CGIac), based on adaptive weight allocation of growth parameters’ contribution to yield, using data such as leaf area index (LAI), soil plant analysis development (SPAD) values, plant height (PH), biomass (BM), and plant water content (PWC). Using UAV data on vegetation indices, feature selection was performed using the Elastic Net. The growth inversion model was then constructed using machine learning methods, including linear regression (LR), random forest (RF), gradient boosting (GB), and support vector regression (SVR). Based on the optimal growth inversion model for winter wheat, spatial distribution of wheat growth in the study area is obtained. The findings demonstrated that CGIac outperforms CGIav (constructed using equal weighting) and CGIcv (built using the coefficient of variation) in yield correlation and prediction accuracy. Specifically, the yield correlation of CGIac improved by up to 0.76 compared to individual indices, while yield prediction accuracy increased by up to 23.14%. Among the evaluated models, the RF model achieved the best performance, with a coefficient of determination (R 2 ) of 0.895 and a root mean square error (RMSE) of 0.0058. A comparison with wheat orthophotos from the same period confirmed that the inversion results were highly consistent with actual growth conditions in the study area. The proposed method significantly improved the accuracy and applicability of winter wheat growth monitoring, overcoming the limitations of single parameters in growth prediction. Additionally, it provided new technological support and innovative solutions for regional crop monitoring and precision farming operations.

Suggested Citation

  • Lulu Zhang & Xiaowen Wang & Huanhuan Zhang & Bo Zhang & Jin Zhang & Xinkang Hu & Xintong Du & Jianrong Cai & Weidong Jia & Chundu Wu, 2024. "UAV-Based Multispectral Winter Wheat Growth Monitoring with Adaptive Weight Allocation," Agriculture, MDPI, vol. 14(11), pages 1-26, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1900-:d:1507478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    20. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1900-:d:1507478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.