IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i10p1833-d1501239.html
   My bibliography  Save this article

Optimization of Manure-Based Substrate Preparation to Reduce Nutrients Losses and Improve Quality for Growth of Agaricus bisporus

Author

Listed:
  • Yucong Geng

    (Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China
    Key Laboratory of Non-Point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yuhan Wang

    (Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China)

  • Han Li

    (Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China)

  • Rui Li

    (Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China)

  • Shengxiu Ge

    (Chen Keming Food Co., Ltd., Changsha 410116, China)

  • Hongyuan Wang

    (Key Laboratory of Non-Point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Shuxia Wu

    (Key Laboratory of Non-Point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Hongbin Liu

    (Key Laboratory of Non-Point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

With the growing world population, food demand has also increased, resulting in increased agricultural waste and livestock manure production. Wheat straw and cow dung are rich nutrient sources and, if not utilized properly, may lead to environmental pollution. Keeping in view the cultivation of Agaricus bisporus on straw/manure-based substrate, the current study aimed to optimize the conventional manure preparation technique to reduce nutrient losses and keep the quality of manure at its best. The treatments were considered as traditional and optimized schemes for mushroom substrate preparation. The results achieved herein indicated that the nutrient losses were low in the optimum scheme. For carbon (C), the loss was 43.55% at the substrate stage in the traditional scheme and reduced to 37.75% in the optimum scheme. In the case of nitrogen (N), the loss was 22.01% in the traditional scheme and was lower (18.49%) in the optimum scheme. The nutrient concentration in Agaricus bisporus was higher with the optimum scheme compared with the traditional scheme. It was 1.74% for C, 7.17% for N, 3.58% for phosphorus (P), and 4.92% for potassium (K). The optimum scheme also improved the Agaricus bisporus yield per unit area (84.55%) and the total yield (28.92%). The net income of the optimum scheme was 102.95% higher compared to the traditional scheme. The economic analysis also revealed that the benefit–cost ratio of the optimum scheme was high (48.86%) compared with the traditional scheme. This study concludes that the use of the optimum scheme can better utilize the wheat straw and cow manure waste for substrate preparation and reducing nutrient losses. In addition, the final mushroom residue can also be used as a leftover substrate for further utilization.

Suggested Citation

  • Yucong Geng & Yuhan Wang & Han Li & Rui Li & Shengxiu Ge & Hongyuan Wang & Shuxia Wu & Hongbin Liu, 2024. "Optimization of Manure-Based Substrate Preparation to Reduce Nutrients Losses and Improve Quality for Growth of Agaricus bisporus," Agriculture, MDPI, vol. 14(10), pages 1-15, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1833-:d:1501239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/10/1833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/10/1833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    2. Pengjiao Tian & Binbin Gong & Kaijian Bi & Yuxin Liu & Jing Ma & Xiqing Wang & Zhangsun Ouyang & Xian Cui, 2023. "Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability," IJERPH, MDPI, vol. 20(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max-Frederik Piepel & Hans-Werner Olfs, 2023. "Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures," Agriculture, MDPI, vol. 13(2), pages 1-12, February.
    2. Małgorzata Holka & Jolanta Kowalska & Magdalena Jakubowska, 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    3. Jingjing Zhu & Feifei Dou & Fesobi Olumide Phillip & Gang Liu & Huaifeng Liu, 2023. "Effect of Nitrification Inhibitors on Photosynthesis and Nitrogen Metabolism in ‘Sweet Sapphire’ ( V. vinifera L.) Grape Seedlings," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    4. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    5. Shuyu Wu & Zhuangzhuang Zhang & Jiang Li & Tianao Wu & Xiyun Jiao, 2022. "An Experimental Study of Paddy Drainage Treatment by Zeolite and Effective Microorganisms (EM)," Sustainability, MDPI, vol. 14(12), pages 1-11, June.
    6. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    7. Otton K. Roubinek & Anna Wilinska-Lisowska & Magdalena Jasinska & Andrzej G. Chmielewski & Krzysztof Czerwionka, 2023. "Production of Biogas from Distillation Residue as a Waste Material from the Distillery Industry in Poland," Energies, MDPI, vol. 16(7), pages 1-15, March.
    8. Danute Petraityte & Jurgita Ceseviciene & Ausra Arlauskiene & Alvyra Slepetiene & Aida Skersiene & Viktorija Gecaite, 2022. "Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    9. Maria Giordano & Spyridon A. Petropoulos & Youssef Rouphael, 2021. "The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture," Agriculture, MDPI, vol. 11(10), pages 1-22, September.
    10. Jasmina Defterdarović & Lana Filipović & Filip Kranjčec & Gabrijel Ondrašek & Diana Kikić & Alen Novosel & Ivan Mustać & Vedran Krevh & Ivan Magdić & Vedran Rubinić & Igor Bogunović & Ivan Dugan & Kre, 2021. "Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    11. Osvaldo Salazar & Renato Diaz & Adriana Nario & Ximena Videla & María Alonso-Ayuso & Miguel Quemada, 2021. "Nitrogen Fertilizer Efficiency Determined by the 15 N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile," Agriculture, MDPI, vol. 11(8), pages 1-21, July.
    12. Ankit & Dhram Prakash & Sunita Sheoran & Parmod Kumar Yadav & Dev Raj & Rachna & Rajeev Kumar Gupta & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Sustainable Cropping Sequences to Improve Soil Fertility and Microbiological Properties," Sustainability, MDPI, vol. 16(22), pages 1-28, November.
    13. Izabelle de Paula Sousa & André Pereira Rosa & Guilherme Kurtemback Almeida & Dilson Novais Rocha & Thiago de Alencar Neves & Alisson Carraro Borges, 2024. "Integrated Assessment of Methane Production from the Co-Digestion of Swine Wastewater and Other Organic Wastes," Sustainability, MDPI, vol. 16(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1833-:d:1501239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.