IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p944-d646221.html
   My bibliography  Save this article

The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture

Author

Listed:
  • Maria Giordano

    (Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy)

  • Spyridon A. Petropoulos

    (Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Nea Ionia, Magnissia, Greece)

  • Youssef Rouphael

    (Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy)

Abstract

Nitrogen is an element present on Earth in different forms, such as gaseous in the air, dissolved in water, immobilized in the soil, as well as biologically bound in all living organisms. The transition from one form to another constitutes the nitrogen cycle. Current agricultural systems rely on nitrogen fertilizers, which represent the reactive or biologically available nitrogen in soil. The excessive presence of reactive nitrogen in the environment has become a threat to soil, water, and air. The increasing demands for food in the world are associated with significant increase in nitrogen fertilizers inputs which threatens the environment and living organisms. The quantities of nitrogen used per capita in developed countries exceed those in developing countries. However, developed countries are regulated by restrictions of fertilizers inputs in agriculture, whereas such regulations do not exist in most of the developing countries. The need to resort to alternative and eco-sustainable strategies to mitigate the pollution related to human activities, is increasingly evident. This review aims to highlight the fate of nitrogen through the main agricultural practices in modern agriculture. Special attention was given to rocket ( Eruca sativa ) which is considered a nitrate hyper-accumulator and was used as a case study in the present review. Finally, some eco-sustainable solutions, useful for mitigating or preventing the excessive release of harmful forms of nitrogen into the environment, were also discussed.

Suggested Citation

  • Maria Giordano & Spyridon A. Petropoulos & Youssef Rouphael, 2021. "The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture," Agriculture, MDPI, vol. 11(10), pages 1-22, September.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:944-:d:646221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julius McGee, 2015. "Does certified organic farming reduce greenhouse gas emissions from agricultural production?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 255-263, June.
    2. Emanuele Lugato & Adrian Leip & Arwyn Jones, 2018. "Mitigation potential of soil carbon management overestimated by neglecting N2O emissions," Nature Climate Change, Nature, vol. 8(3), pages 219-223, March.
    3. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    4. Lukas P. Fesenfeld & Tobias S. Schmidt & Alexander Schrode, 2018. "Climate policy for short- and long-lived pollutants," Nature Climate Change, Nature, vol. 8(11), pages 933-936, November.
    5. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    6. Martina Lori & Sarah Symnaczik & Paul Mäder & Gerlinde De Deyn & Andreas Gattinger, 2017. "Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    7. Wang, Tong & Richard Teague, W. & Park, Seong C. & Bevers, Stan, 2018. "Evaluating long-term economic and ecological consequences of continuous and multi-paddock grazing - a modeling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 197-207.
    8. Subash Dahal & Dorcas Franklin & Anish Subedi & Miguel Cabrera & Dennis Hancock & Kishan Mahmud & Laura Ney & Cheolwoo Park & Deepak Mishra, 2020. "Strategic Grazing in Beef-Pastures for Improved Soil Health and Reduced Runoff-Nitrate-A Step towards Sustainability," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana Brondi & Mohamed Eisa & Ricardo Bortoletto-Santos & Donata Drapanauskaite & Tara Reddington & Clinton Williams & Caue Ribeiro & Jonas Baltrusaitis, 2023. "Recovering, Stabilizing, and Reusing Nitrogen and Carbon from Nutrient-Containing Liquid Waste as Ammonium Carbonate Fertilizer," Agriculture, MDPI, vol. 13(4), pages 1-28, April.
    2. Bitopi Biswas & Mohammad Tariful Alam Khan & Mohammad Billal Hossain Momen & Mohammad. Rashedur Rahman Tanvir & Abu Mohammad Shahidul Alam & M Robiul Islam Islam, 2024. "Advancements in fuzzy expert systems for site-specific nitrogen fertilisation: Incorporating RGB colour codes and irrigation schedules for precision maize production in Bangladesh," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(3), pages 155-166.
    3. Jun Liu & Haotian Cai & Shan Chen & Jie Pi & Liye Zhao, 2023. "A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives," Agriculture, MDPI, vol. 13(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Aide & Indi Braden & Susan Murray & Collin Schabbing & Sophia Scott & Samantha Siemers & Sven Svenson & Julie Weathers, 2021. "Optimizing Beef Cow-Calf Grazing across Missouri with an Emphasis on Protecting Ecosystem Services," Land, MDPI, vol. 10(10), pages 1-12, October.
    2. Camila Fritzen Cidón & Paola Schmitt Figueiró & Dusan Schreiber, 2021. "Benefits of Organic Agriculture under the Perspective of the Bioeconomy: A Systematic Review," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    3. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    4. Pomogaev, Vitalii, 2021. "Углеродный Рынок И Климатические Проекты: Перспективы И Возможности Для Алтайского Края [Carbon Market and Climate Projects: Perspectives and Opportunities for the Altai Territory]," MPRA Paper 114303, University Library of Munich, Germany, revised 25 Aug 2022.
    5. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    6. Max-Frederik Piepel & Hans-Werner Olfs, 2023. "Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures," Agriculture, MDPI, vol. 13(2), pages 1-12, February.
    7. Ariana Macieira & Joana Barbosa & Paula Teixeira, 2021. "Food Safety in Local Farming of Fruits and Vegetables," IJERPH, MDPI, vol. 18(18), pages 1-15, September.
    8. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    9. Chowdhury, Iftekhar Uddin Ahmed & Wang, Tong & Jin, Hailong & Smart, Alexander J., 2020. "Exploring the Determinants of Perceived Benefits of Rotational Grazing in the U. S. Great Plains," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304487, Agricultural and Applied Economics Association.
    10. Małgorzata Holka & Jolanta Kowalska & Magdalena Jakubowska, 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    11. William J. Harvey & Naomi Black & Salma Essaouabi & Leo Petrokofsky & Vidya Rangan & Matt Stancliffe Bird & Daniel Villar & Marxine Waite & Gillian Petrokofsky, 2025. "The Impact of Sustainability Certification Schemes and Labels on Greenhouse Gas Emissions: A Systematic Evidence Map," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
    12. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    13. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    14. Rachel Soper, 2020. "How wage structure and crop size negatively impact farmworker livelihoods in monocrop organic production: interviews with strawberry harvesters in California," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(2), pages 325-336, June.
    15. Charlotte Höpker & Klaus Dittert & Hans-Werner Olfs, 2025. "On-Farm Application of Near-Infrared Spectroscopy for the Determination of Nutrients in Liquid Organic Manures: Challenges and Opportunities," Agriculture, MDPI, vol. 15(2), pages 1-15, January.
    16. Castillo-Eguskitza, Nekane & Hoyos, David & Onaindia, Miren & Czajkowski, Mikolaj, 2019. "Unraveling local preferences and willingness to pay for different management scenarios: A choice experiment to biosphere reserve management," Land Use Policy, Elsevier, vol. 88(C).
    17. Che, Yuyuan & Feng, Hongli & Hennessy, David, 2021. "Assessing Peer Effects and Subsidy Impacts in Technology Adoption: Application to Grazing Management Choices with Farm Survey Data," 2021 Conference, August 17-31, 2021, Virtual 315123, International Association of Agricultural Economists.
    18. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    19. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    20. Yekimov Sergiy, 2023. "Study of the problem of reducing greenhouse gas emissions in agricultural production Czech Republic," Papers 2305.13253, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:944-:d:646221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.