IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i10p1711-d1488798.html
   My bibliography  Save this article

Evaluation of Nitrogen Fertilizer Supply and Soil Nitrate Thresholds for High Yields of Foxtail Millet

Author

Listed:
  • Yiwei Lu

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
    These authors contributed equally to this work.)

  • Yu Zhao

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
    These authors contributed equally to this work.)

  • Xueyan Xia

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
    These authors contributed equally to this work.)

  • Meng Liu

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China)

  • Zhimin Wei

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China)

  • Jingxin Wang

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China)

  • Jianjun Liu

    (Hebei Academy of Coarse Cereal Industry Technology, Handan 056000, China)

  • Jihan Cui

    (National Foxtail Millet Improvement Center, Key Laboratory of Characteristic Grain Genetics and Utilization, Ministry of Agriculture and Rural Affairs, Hebei Coarse Cereal Research Laboratory, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China)

  • Shunguo Li

    (Hebei Academy of Agriculture and Forestry, Shijiazhuang 050000, China)

Abstract

Foxtail millet is an important cereal crop in the North China Plain. However, excessive nitrogen fertilizer application over the years has led to declining yield and soil quality. This study investigated nutrient management strategies for foxtail millet based on crop yield levels and soil nutrient availability. In a field where targeted fertilization was conducted over six seasons, nitrogen fertilization effects and the dynamics of soil-available nitrogen were monitored continuously for two consecutive years (2022–2023) across five different foxtail millet varieties with varying yield levels. The study aimed to determine the optimal nitrogen application rate for achieving a high yield of foxtail millet, the minimum soil nitrate threshold required to maintain soil fertility, and the effective nitrogen application rate range for sustaining soil-available nitrate levels. Results showed that fertilization significantly affected dry matter weight during flowering, while variety affected dry matter weight at maturity. The average nitrogen application rate for achieving high yield across all five millet varieties was 141.3 kg·ha −1 . Specifically, the average nitrogen application rate of nitrogen-efficient varieties achieving high yield (5607.32–5637.19 kg·ha −1 ) was 151.5 kg·ha −1 , while the average nitrogen application rate of nitrogen-inefficient varieties achieving high yield (4749.77–4847.74 kg·ha −1 ) was 134.5 kg·ha −1 . Soil NH 4 + -N and NO 3 − -N content increased when nitrogen application rate exceeded 360 kg·ha −1 , posing environmental risks. To achieve high yield, soil nitrate levels would be maintained at an average of 17.23 mg·kg −1 (before sowing) and 9.75 mg·kg −1 (at maturity). A relationship between soil nitrate and nitrogen application rate was established: y = 867.5 − 50z (where y represents the optimal nitrogen application rate for high yield (kg·ha −1 ), and z represents soil NO 3 − -N content in the 0–20 cm layer before sowing, ranging from 10.0 to 17.35 mg·kg −1 ), which provided a practical method for nitrogen fertilization to achieve high yield of foxtail millet. In this study, the fertilization strategy was optimized according to soil nutrient level and yield targets, and the nitrogen application rate was controlled within 360 kg·ha −1 based on the soil nitrate nitrogen content, which will be instructive for reducing fertilizer use, maximizing fertilizer efficiency, and increasing yield.

Suggested Citation

  • Yiwei Lu & Yu Zhao & Xueyan Xia & Meng Liu & Zhimin Wei & Jingxin Wang & Jianjun Liu & Jihan Cui & Shunguo Li, 2024. "Evaluation of Nitrogen Fertilizer Supply and Soil Nitrate Thresholds for High Yields of Foxtail Millet," Agriculture, MDPI, vol. 14(10), pages 1-14, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1711-:d:1488798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/10/1711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/10/1711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    2. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    3. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    4. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    6. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    7. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    8. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    9. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    10. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    11. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    13. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    14. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    15. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    18. Maity, Shrabanti & Sinha, Anup & Kumar Rath, Mithun & Rummana Barlaskar, Ummey, 2023. "Resource Use Efficiency and Cleaner Agricultural Production: An Application of Technical Inefficiency Effects Model for Paddy Producing Zones of West Bengal," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    19. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Xinbing Wang & Yuxin Miao & Rui Dong & Zhichao Chen & Yanjie Guan & Xuezhi Yue & Zheng Fang & David J. Mulla, 2019. "Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1711-:d:1488798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.