IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2023i1p10-d1304508.html
   My bibliography  Save this article

Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm

Author

Listed:
  • Kazimierz Obremski

    (Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland)

  • Józef Tyburski

    (Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Paweł Wojtacha

    (Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland)

  • Ewa Sosnówka-Czajka

    (Department of Poultry Breeding, National Research Institute of Animal Production, 32-083 Balice, Poland)

  • Iwona Skomorucha

    (Department of Poultry Breeding, National Research Institute of Animal Production, 32-083 Balice, Poland)

  • Janusz Pomianowski

    (Department of Meat Technology and Chemistry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Paweł Parowicz

    (SBP Feeds Ltd., Piastowska 38A, 14-240 Susz, Poland)

Abstract

The aim of this study was to evaluate whether production costs can be reduced and whether the profitability of organic chicken fattening can be increased by selecting the appropriate genotypes. Rhode Island Red (K-11) and Sussex (S-66) conservative chicken genotypes, as well as modern chicken genotypes such as slow-growing Hubbard JA 957 hybrids and fast-growing Ross 308 hybrids, were selected for the study. One hundred and sixty chickens were used in the experiment (forty birds per group). The birds were fed commercial organic complete feed up to 52 days of age and organic farm-made feed (to reduce costs) between 53 and 81 days of age. Population distribution was determined using the Kolmogorov–Smirnov test. The results were analyzed statistically using one-way analysis of variance (ANOVA) with multiple comparisons and the post hoc Tukey test at a significance level of p < 0.05. The 81-day fattening period (the minimum recommended period in organic farming) led to considerable weight deficits in Rhode Island Red and S-66 chickens and excessive slaughter/trade weights in Hubbard JA 957 and Ross 308 chickens. The feed conversion ratio was high in Rhode Island Red (K-11) and Sussex (S-66) chickens at 4.19 and 4.50, respectively, and much lower in Hubbard JA 957 and Ross 308 chickens at 2.79 and 2.53, respectively. The choice of chicken genotypes had a major impact on the profitability of organic farming, and the total costs of feed and other ingredients per kg of body weight were determined at EUR 3.83 for Rhode Island Red (K-11), EUR 3.90 for Sussex (S-66), EUR 6.57 for Hubbard JA 957, and EUR 6.62 for Ross 308 genotypes. The profitability of organic farming can be increased by selecting modern, meat-type, slow-growing chicken genotypes.

Suggested Citation

  • Kazimierz Obremski & Józef Tyburski & Paweł Wojtacha & Ewa Sosnówka-Czajka & Iwona Skomorucha & Janusz Pomianowski & Paweł Parowicz, 2023. "Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm," Agriculture, MDPI, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:10-:d:1304508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klaas Calker & Paul Berentsen & Gerard Giesen & Ruud Huirne, 2005. "Identifying and ranking attributes that determine sustainability in Dutch dairy farming," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 22(1), pages 53-63, March.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    3. M. Lichovníková & J. Jandásek & M. Jůzl & E. Dračková, 2009. "The meat quality of layer males from free range in comparison with fast growing chickens," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 54(11), pages 490-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Kociszewski & Andrzej Graczyk & Krystyna Mazurek-Łopacinska & Magdalena Sobocińska, 2020. "Social Values in Stimulating Organic Production Involvement in Farming—The Case of Poland," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    4. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    5. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    6. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    7. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    8. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    9. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    10. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    11. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    12. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    13. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    14. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    15. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    16. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    17. Simon R. Swaffield & Robert C. Corry & Paul Opdam & Wendy McWilliam & Jørgen Primdahl, 2019. "Connecting business with the agricultural landscape: business strategies for sustainable rural development," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1357-1369, November.
    18. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    19. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    20. van Calker, K.J. & Berentsen, P.B.M. & de Boer, I.J.M. & Giesen, G.W.J. & Huirne, R.B.M., 2007. "Modelling worker physical health and societal sustainability at farm level: An application to conventional and organic dairy farming," Agricultural Systems, Elsevier, vol. 94(2), pages 205-219, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:10-:d:1304508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.