IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v88y2016icp343-354.html
   My bibliography  Save this article

A strategy for reducing CO2 emissions from buildings with the Kaya identity – A Swiss energy system analysis and a case study

Author

Listed:
  • Mavromatidis, Georgios
  • Orehounig, Kristina
  • Richner, Peter
  • Carmeliet, Jan

Abstract

Within the general context of Greenhouse Gas (GHG) emissions reduction, decomposition analysis allows the quantification of the contribution of different factors to changes in emissions as well as the assessment of the effectiveness of policy and technology measures. The Kaya identity has been widely used for that purpose in order to disaggregate carbon emissions into various driving forces. In this paper, it is applied for the analysis of emissions resulting from energy use at three different scales. First, a decomposition analysis of the carbon emissions for the complete Swiss energy system is presented using the future projections from the Swiss Energy Strategy 2050. The Kaya identity is then applied to the Swiss building sector after it is adapted with factors that are more relatable to building parameters, such as floor area instead of Gross Domestic Product (GDP). Finally, the last level of analysis is a small scale community energy system for a unique Swiss village that aims to significantly reduce its emissions. An energy strategy is developed and its effectiveness is assessed with the adapted Kaya identity and benchmarked against the Swiss average values. The presented method demonstrates how the performance of buildings under various retrofitting scenarios can be benchmarked against future emission targets.

Suggested Citation

  • Mavromatidis, Georgios & Orehounig, Kristina & Richner, Peter & Carmeliet, Jan, 2016. "A strategy for reducing CO2 emissions from buildings with the Kaya identity – A Swiss energy system analysis and a case study," Energy Policy, Elsevier, vol. 88(C), pages 343-354.
  • Handle: RePEc:eee:enepol:v:88:y:2016:i:c:p:343-354
    DOI: 10.1016/j.enpol.2015.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515301609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    2. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    3. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    4. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    5. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    6. Dimitroulopoulou, C. & Ziomas, I., 2011. "Update of indicators for climate change mitigation in Greece," Energy Policy, Elsevier, vol. 39(10), pages 6495-6504, October.
    7. Lise, Wietze, 2006. "Decomposition of CO2 emissions over 1980-2003 in Turkey," Energy Policy, Elsevier, vol. 34(14), pages 1841-1852, September.
    8. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, Portia & Orehounig, Kristina & Grosspietsch, David & Carmeliet, Jan, 2018. "A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050," Applied Energy, Elsevier, vol. 231(C), pages 1285-1306.
    2. Klaas Lenaerts & Simone Tagliapietra & Guntram B. Wolff, 2022. "The Global Quest for Green Growth: An Economic Policy Perspective," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    3. Yujie Zhang & Qingsong Wang & Shu Tian & Yue Xu & Xueliang Yuan & Qiao Ma & Haichao Ma & Shuo Yang & Yuan Xu & Chengqing Liu, 2024. "Research on the path of industrial sector's carbon peak based on the perspective of provincial differentiation: a case study from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23245-23282, September.
    4. Mohammad Karamouz & Mohammadreza Zare & Elham Ebrahimi, 2023. "System Dynamics-based Carbon Footprint Assessment of Industrial Water and Energy Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2039-2062, March.
    5. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    6. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Gunta Grīnberga-Zālīte, 2023. "The Impact of Economic Growth and Urbanisation on Environmental Degradation in the Baltic States: An Extended Kaya Identity," Agriculture, MDPI, vol. 13(9), pages 1-25, September.
    7. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    8. Yi Zhao & Gang Lin & Dong Jiang & Jingying Fu & Xiang Li, 2022. "Low-Carbon Development from the Energy–Water Nexus Perspective in China’s Resource-Based City," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    9. Xu, Lei & Chen, Nengcheng & Chen, Zeqiang, 2017. "Will China make a difference in its carbon intensity reduction targets by 2020 and 2030?," Applied Energy, Elsevier, vol. 203(C), pages 874-882.
    10. Remizov, Alexey & Memon, Shazim Ali & Kim, Jong R., 2024. "Novel building energy performance-based climate zoning enhanced with spatial constraint," Applied Energy, Elsevier, vol. 355(C).
    11. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
    12. Seo-Hoon Kim & SungJin Lee & Seol-Yee Han & Jong-Hun Kim, 2020. "Scenario Analysis for GHG Emission Reduction Potential of the Building Sector for New City in South Korea," Energies, MDPI, vol. 13(20), pages 1-19, October.
    13. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    14. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    15. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    16. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    17. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    18. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    19. Mihaela D. Rovinaru & Dana E. Bako & Flavius I. Rovinaru & Adina V. Rus & Sebastian G. Aldea, 2022. "Where Are We Heading? Tackling the Climate Change in a Globalized World," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    20. Fangjie Cao & Yun Qiu & Qianxin Wang & Yan Zou, 2022. "Urban Form and Function Optimization for Reducing Carbon Emissions Based on Crowd-Sourced Spatio-Temporal Data," IJERPH, MDPI, vol. 19(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    2. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    3. Julià Coma & José Miguel Maldonado & Alvaro de Gracia & Toni Gimbernat & Teresa Botargues & Luisa F. Cabeza, 2019. "Comparative Analysis of Energy Demand and CO 2 Emissions on Different Typologies of Residential Buildings in Europe," Energies, MDPI, vol. 12(12), pages 1-17, June.
    4. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    5. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    6. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    7. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    8. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    9. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    10. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    11. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    12. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    13. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    14. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    15. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    16. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    17. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    18. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    19. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    20. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:88:y:2016:i:c:p:343-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.