IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7430-d674448.html
   My bibliography  Save this article

Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions

Author

Listed:
  • Yang Ding

    (School of Economics and Management, Wuhan Sports University, Wuhan 430070, China)

  • Qing Yang

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Lanjuan Cao

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
    School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China)

Abstract

This study examines the relationship between urbanization, economic growth, industrial transformation, technological change, public services, demographical change, urban and natural environmental changes, and carbon emissions using a dataset of 182 prefecture-level cities in China between 2001 and 2010. Specifically, this paper differs from previous studies in two aspects. First, the extant literature has focused on how economic processes accompanying rapid urbanization affect carbon emissions in urban areas but gives little attention to the other dimensions of urbanization, including social and environmental changes, which may have important effects on carbon emissions. We assessed the effects of 17 key processes accompanying urbanization in a full range of economic, social, and environmental dimensions on carbon dioxide emissions in urban areas. The results showed that social processes accompanied with rapid urbanization had distinct effects on carbon emissions, compared to economic and environmental processes. Specifically, improvement in public services, indicated by education and cultural developments, reduces the increase in carbon emissions during urbanization, while economic growth and urban construction reinforces the growth in carbon emissions. Second, we examined the impact of various urbanization processes on carbon dioxide emissions using a unique dataset of 182 prefecture-level cities that covers a wide span of regions in China. The results of our analyses on the city level have important implications for the formulation of comprehensive policies aimed at reducing carbon dioxide emission in urban areas, focusing on different urbanization processes in economic, social, and environmental phases.

Suggested Citation

  • Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7430-:d:674448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    2. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    3. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    4. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    5. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    6. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    7. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    8. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    9. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    10. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    11. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    12. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    13. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    14. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    15. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    16. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    17. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    18. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    19. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    20. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    21. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    22. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    23. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    24. Lee, Jungyoon & Robinson, Peter, 2015. "Panel nonparametric regression with fixed effects," LSE Research Online Documents on Economics 61431, London School of Economics and Political Science, LSE Library.
    25. Muhammad Shahbaz & Rashid Sbia & Helmi Hamdi & Ilhan Ozturk, 2014. "Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates," Post-Print halshs-01902764, HAL.
    26. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    27. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2021. "The puzzle of greenhouse gas footprints of oil abundance," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    28. Lee, Jungyoon & Robinson, Peter M., 2015. "Panel nonparametric regression with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 346-362.
    29. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    30. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    31. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    32. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    33. Elkhan Richard Sadik-Zada & Mattia Ferrari, 2020. "Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    34. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    35. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    36. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    37. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    38. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    39. Behera, Smruti Ranjan & Dash, Devi Prasad, 2017. "The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 96-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    2. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    3. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    4. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    5. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    6. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    7. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    8. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    9. Sheng, Pengfei & Guo, Xiaohui, 2016. "The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions," Economic Modelling, Elsevier, vol. 53(C), pages 208-215.
    10. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    11. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    13. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    14. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    15. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    16. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO 2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    17. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    18. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.
    19. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    20. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7430-:d:674448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.