IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1474-d1202439.html
   My bibliography  Save this article

Optimization and Design of Disc-Type Furrow Opener of No-Till Seeder for Green Manure Crops in South Xinjiang Orchards

Author

Listed:
  • Rui Ye

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Xueting Ma

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Jinfei Zhao

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Jiean Liao

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Xinying Liu

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

  • Linqiao Xi

    (College of Animal Science, Tarim University, Alar 843300, China)

  • Guangdong Su

    (College of Mechanical Electrification Engineering, Tarim University, Alar 843300, China
    Agricultural Engineering Key Laboratory, Ministry of Higher Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar 843300, China)

Abstract

For the issues of the poor stability of the furrow opener depth, large soil backfill depth, and inconsistent furrow shape on a no-till seeder for planting green manure between rows of orchards in South Xinjiang, a double-disc, corrugated furrow opener is designed. This paper analyzes the law of soil movement between corrugated double-disc and traditional double-disc furrow openers using the discrete element method (DEM) and concludes that the corrugation width and number of corrugations on the corrugated double-disc furrow opener are the primary factors affecting furrowing operation. When the number of corrugations is sixteen, the forward speed is six kilometers per hour, and when the corrugation width is seventeen and a half millimeters, the simulation operation parameters are optimal. The soil-bin validation experiment results are as follows: Under the condition of an 80 mm furrow depth, the stability of the average furrow depth is enhanced by 3.54%, the working resistance and the average disrupted soil area are increased by 26.16 N and 220 mm 2 , respectively, and the backfill depth is decreased by 10.98 mm. The operation effect of a double-disc furrow opener with corrugated discs is enhanced by the high stability of the furrow depth, low working resistance, and small backfill depth. This study provides a theoretical foundation for the design and optimization of the furrow opener components of a no-till seeder for planting green manure between rows of orchards.

Suggested Citation

  • Rui Ye & Xueting Ma & Jinfei Zhao & Jiean Liao & Xinying Liu & Linqiao Xi & Guangdong Su, 2023. "Optimization and Design of Disc-Type Furrow Opener of No-Till Seeder for Green Manure Crops in South Xinjiang Orchards," Agriculture, MDPI, vol. 13(8), pages 1-18, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1474-:d:1202439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    2. Fiaz Ahmad & Ding Weimin & Ding Qishou & Abdur Rehim & Khawar Jabran, 2017. "Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions," Sustainability, MDPI, vol. 9(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixiang Chen & Jinbo Ren & Weiliang Huang & Longbin Chen & Wuxiong Weng & Chongcheng Chen & Shuhe Zheng, 2024. "Design and Parameter Optimization of a Dual-Disc Trenching Device for Ecological Tea Plantations," Agriculture, MDPI, vol. 14(5), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Marczuk & Agata Blicharz-Kania & Petr A. Savinykh & Alexey Y. Isupov & Andrey V. Palichyn & Ilya I. Ivanov, 2019. "Studies of a Rotary–Centrifugal Grain Grinder Using a Multifactorial Experimental Design Method," Sustainability, MDPI, vol. 11(19), pages 1-11, September.
    2. Qi Wang & Longtu Zhu & Mingwei Li & Dongyan Huang & Honglei Jia, 2018. "Conservation Agriculture Using Coulters: Effects of Crop Residue on Working Performance," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    3. Wenqi Zhou & Chao Song & Xiaobo Sun & Ziming Liu & Xue Ni & Kangjia Shen & Yi Jia Wang & Liquan Tian, 2022. "Design of High-Efficiency Soil-Returning Liquid Fertilizer Deep-Application Furrow Openers for Improving Furrowing Performance in Cold Regions of Northeast China," Agriculture, MDPI, vol. 12(9), pages 1-21, August.
    4. Guangyuan Zhong & Hongwen Li & Jin He & Qingjie Wang & Caiyun Lu & Chao Wang & Zhenwei Tong & Dandan Cui & Dong He, 2023. "Design and Test of Single-Disc Opener for No-Till Planter Based on Support Cutting," Agriculture, MDPI, vol. 13(8), pages 1-20, August.
    5. Honggang Li & Xiaomeng Xia & Linqiang Chen & Ruiqiang Ran & Dongyan Huang, 2023. "Elastic Gauge Wheel with Irregular Cavity for Improving Seed Furrow Structure and Seeding Quality," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    6. Wenqi Zhou & Xue Ni & Kai Song & Nuan Wen & Chao Song & Xiaobo Sun & Yijia Wang & Jinfeng Wang & Qi Wang & Han Tang, 2023. "Bionic Design of Furrow Opener Based on Muskrat Claw-Toe Structure to Improve the Operating Performance of Deep Application of Liquid Fertilizer in Paddy Fields in Cold Region of China," Agriculture, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1474-:d:1202439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.