IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1286-d895171.html
   My bibliography  Save this article

Design of High-Efficiency Soil-Returning Liquid Fertilizer Deep-Application Furrow Openers for Improving Furrowing Performance in Cold Regions of Northeast China

Author

Listed:
  • Wenqi Zhou

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Chao Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Xiaobo Sun

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Ziming Liu

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Xue Ni

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Kangjia Shen

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Yi Jia Wang

    (Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong LG-108, Composite Building, Pokfulam Road, Hong Kong SAR 999077, China)

  • Liquan Tian

    (Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua 321007, China)

Abstract

Liquid-fertilizer deep-application techniques are techniques for applying fertilizers to the root system of crops, which can effectively improve the utilization rate of fertilizers and reduce application amounts. Due to the soil viscosity of soils in the cold region of Northeast China, the soil return rate of furrow openers for liquid-fertilizer deep applications is low, which can easily cause excessive volatilizations of liquid fertilizers. Therefore, aiming at the operational requirements of low soil disturbance for liquid-fertilizer furrowing and deep applications, an efficient soil-returning liquid-fertilizer deep-application furrow opener was innovatively designed based on soil characteristics during the inter-cultivation period in the cold region of Northeast China. The discrete element method (DEM) was used to analyze the operating performance of the high-efficiency soil-returning liquid-fertilizer deep-application furrow openers, which is determined by key operating parameters including width and slip cutting angle. The DEM Virtual Simulation Experiment results show that the optimal combination is the width of 37.52 mm and a slip cutting angle of 43.27°, and the test results show that the optimal performance of the high-efficiency soil-returning liquid-fertilizer deep-application furrow opener is that the soil disturbance rate is 51.81%, and the soil-returning depth is 52.1 mm. This paper clarifies the relationship between the width and the slip cutting angle in furrowing resistance and soil disturbance and the mechanism by which the width and slip cutting angle affect soil disturbance. Above all, this study provides a theoretical and practical reference for the design of liquid-fertilizer deep-application furrow openers.

Suggested Citation

  • Wenqi Zhou & Chao Song & Xiaobo Sun & Ziming Liu & Xue Ni & Kangjia Shen & Yi Jia Wang & Liquan Tian, 2022. "Design of High-Efficiency Soil-Returning Liquid Fertilizer Deep-Application Furrow Openers for Improving Furrowing Performance in Cold Regions of Northeast China," Agriculture, MDPI, vol. 12(9), pages 1-21, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1286-:d:895171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Qu & Chulin Pan & Hongpeng Guo, 2021. "Factors Affecting the Promotion of Conservation Tillage in Black Soil—The Case of Northeast China," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    2. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    3. Jiale Zhao & Xiaogeng Wang & Jian Zhuang & Huili Liu & Yijia Wang & Yajun Yu, 2021. "Coupled Bionic Design Based on Primnoa Mouthpart to Improve the Performance of a Straw Returning Machine," Agriculture, MDPI, vol. 11(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ye & Xueting Ma & Jinfei Zhao & Jiean Liao & Xinying Liu & Linqiao Xi & Guangdong Su, 2023. "Optimization and Design of Disc-Type Furrow Opener of No-Till Seeder for Green Manure Crops in South Xinjiang Orchards," Agriculture, MDPI, vol. 13(8), pages 1-18, July.
    2. Minghao Qu & Gang Wang & Zihao Zhou & Xiaomei Gao & Hailan Li & Hewen Tan & Meiqi Xiang & Honglei Jia, 2023. "Development and Performance Evaluation of a Pressure-Adjustable Waterjet Stubble-Cutting Device with Thickness Detection for No-Till Sowing," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    3. Li Ma & Jiahao Lin & Chuangang Li & Yun Teng, 2024. "Research on Strategy Optimization of Green Agricultural Production Trusteeship to Promote Black Land Protection," Land, MDPI, vol. 13(5), pages 1-30, May.
    4. Honggang Li & Xiaomeng Xia & Linqiang Chen & Ruiqiang Ran & Dongyan Huang, 2023. "Elastic Gauge Wheel with Irregular Cavity for Improving Seed Furrow Structure and Seeding Quality," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    5. Wang Ge & Shiyun Zhang & Yan Lu & Jiyu Jiang & Hui Jiang & Xiaona Cheng, 2022. "Can Higher Land Rentals Promote Soil Conservation of Large-Scale Farmers in China?," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    6. Hongbo Xu & Zhichao Hu & Peng Zhang & Fengwei Gu & Feng Wu & Wanli Song & Chunci Wang, 2021. "Optimization and Experiment of Straw Back-Throwing Device of No-Tillage Drill Using Multi-Objective QPSO Algorithm," Agriculture, MDPI, vol. 11(10), pages 1-15, October.
    7. Guang Yang & Hua Yan & Quanfeng Li, 2023. "Coordination Analysis of Sustainable Agricultural Development in Northeast China from the Perspective of Spatiotemporal Relationships," Sustainability, MDPI, vol. 15(23), pages 1-25, November.
    8. Wenqi Zhou & Xue Ni & Kai Song & Nuan Wen & Chao Song & Xiaobo Sun & Yijia Wang & Jinfeng Wang & Qi Wang & Han Tang, 2023. "Bionic Design of Furrow Opener Based on Muskrat Claw-Toe Structure to Improve the Operating Performance of Deep Application of Liquid Fertilizer in Paddy Fields in Cold Region of China," Agriculture, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1286-:d:895171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.