IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p254-d1042583.html
   My bibliography  Save this article

Bionic Design of Furrow Opener Based on Muskrat Claw-Toe Structure to Improve the Operating Performance of Deep Application of Liquid Fertilizer in Paddy Fields in Cold Region of China

Author

Listed:
  • Wenqi Zhou

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Xue Ni

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Kai Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Nuan Wen

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Chao Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Xiaobo Sun

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Yijia Wang

    (Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong LG-108, Composite Building, Pokfulam Road, Hong Kong SAR 999077, China)

  • Jinfeng Wang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Qi Wang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Han Tang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

Abstract

The deep application of liquid fertilizer in paddy fields is a fertilization technique that applies liquid fertilizer deep near the root system of paddy field crops, which can effectively improve the absorption rate of the crops and reduce the amount of fertilizer applied. In the cold regions of China, the soil return rate of the furrowing operation of the deep application of liquid fertilizer in paddy fields is low, which can easily cause the excessive liquid leakage of fertilizer and affect crop growth. Therefore, it is difficult to popularize in large areas. According to the characteristics of paddy soil in the cold regions of China and the operating requirements of a high backfill rate and low disturbance rate of the soil of the deep application of liquid fertilizer, this paper designed a bionic liquid fertilizer deep application furrow opener based on the claw-toe structure of the muskrat. In this study, an indoor soil bin test was conducted by constructing a deep application environment for the liquid fertilizer in paddy fields. The results of the soil bin test showed the effects of the key operating parameters of the bionic design of the liquid fertilizer deep application furrow opener, spraying pressure of the liquid fertilizer and operating speed on the furrowing resistance, soil disturbance rate and the leakage amount of liquid fertilizer. The bionic design of the liquid fertilizer deep application furrow opener has a low soil disturbance rate and leakage amount of fertilizer when the operating speed is 0.8 m s −1 , and the spraying pressure is 0.2 MPa. This furrow opener significantly improves the operating performance of the deep application of liquid fertilizer in the cold regions of China and is suitable for the deep application of liquid fertilizer in the paddy fields of this region.

Suggested Citation

  • Wenqi Zhou & Xue Ni & Kai Song & Nuan Wen & Chao Song & Xiaobo Sun & Yijia Wang & Jinfeng Wang & Qi Wang & Han Tang, 2023. "Bionic Design of Furrow Opener Based on Muskrat Claw-Toe Structure to Improve the Operating Performance of Deep Application of Liquid Fertilizer in Paddy Fields in Cold Region of China," Agriculture, MDPI, vol. 13(2), pages 1-18, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:254-:d:1042583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honggang Li & Xiaomeng Xia & Linqiang Chen & Ruiqiang Ran & Dongyan Huang, 2023. "Elastic Gauge Wheel with Irregular Cavity for Improving Seed Furrow Structure and Seeding Quality," Agriculture, MDPI, vol. 13(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ye & Xueting Ma & Jinfei Zhao & Jiean Liao & Xinying Liu & Linqiao Xi & Guangdong Su, 2023. "Optimization and Design of Disc-Type Furrow Opener of No-Till Seeder for Green Manure Crops in South Xinjiang Orchards," Agriculture, MDPI, vol. 13(8), pages 1-18, July.
    2. Wenqi Zhou & Chao Song & Xiaobo Sun & Ziming Liu & Xue Ni & Kangjia Shen & Yi Jia Wang & Liquan Tian, 2022. "Design of High-Efficiency Soil-Returning Liquid Fertilizer Deep-Application Furrow Openers for Improving Furrowing Performance in Cold Regions of Northeast China," Agriculture, MDPI, vol. 12(9), pages 1-21, August.
    3. Honggang Li & Xiaomeng Xia & Linqiang Chen & Ruiqiang Ran & Dongyan Huang, 2023. "Elastic Gauge Wheel with Irregular Cavity for Improving Seed Furrow Structure and Seeding Quality," Agriculture, MDPI, vol. 13(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:254-:d:1042583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.