IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i7p1345-d1186088.html
   My bibliography  Save this article

Effects of Oxygenated Brackish Water on Pakchoi ( Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model

Author

Listed:
  • Yuyang Shan

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Yan Sun

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Wanghai Tao

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Lijun Su

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Oxygenated irrigation can improve soil physical and chemical properties and increase vegetable yields. It provides an effective method for safe and efficient utilization of brackish water, but its growth-promoting pathway is unclear. We investigated the effects of brackish water culture at five dissolved oxygen concentrations (9.5 (CK), 12.5, 15.5, 18.5, and 22.5 mg/L) on pakchoi ( Brassica chinensis L.) growth characteristics by hydroponics experiment, and the logistic model to fit and analyze pakchoi growth characteristics. At a brackish water dissolved oxygen concentration of 18.5 mg/L, nitrogen mass fraction was significantly higher than in a control treatment by 43.4%, and pakchoi effective accumulated temperature increment during vigorous plant height and root length growth was significantly lower than other treatments. The logistic model effectively simulated pakchoi plant height and root length growth, and both theoretical maximum plant height and root length reached their maximum values at 18.5 mg/L dissolved oxygen concentration. Path analysis showed that the maximum net photosynthetic rate and nitrogen mass fraction were the main factors affecting aboveground pakchoi fresh weight. In conclusion, a dissolved oxygen concentration of 18.5 mg/L in brackish water is more appropriate for pakchoi to achieve high yield under brackish water hydroponics conditions. Our results provide guidance for the safe and efficient utilization of brackish water in green and efficient vegetable production.

Suggested Citation

  • Yuyang Shan & Yan Sun & Wanghai Tao & Lijun Su, 2023. "Effects of Oxygenated Brackish Water on Pakchoi ( Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1345-:d:1186088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/7/1345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/7/1345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Mengjie & Wang, Quanjiu & Sun, Yan & Zhang, Jihong, 2021. "Effects of oxygenated brackish water on germination and growth characteristics of wheat," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    4. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    5. Jaenam Lee & Hyungjin Shin, 2022. "Agricultural Reservoir Operation Strategy Considering Climate and Policy Changes," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    6. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    7. Zhen Wang & Kongyang Yi & Qiuyuan Lin & Lei Yang & Xiaosong Chen & Hui Chen & Yunqi Liu & Dacheng Wei, 2019. "Free radical sensors based on inner-cutting graphene field-effect transistors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    3. Ahmad Azeem & Wenxuan Mai, 2024. "Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions," Resources, MDPI, vol. 13(8), pages 1-16, August.
    4. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Federica Angilè & Gaetano Alessandro Vivaldi & Chiara Roberta Girelli & Laura Del Coco & Gabriele Caponio & Giuseppe Lopriore & Francesco Paolo Fanizzi & Salvatore Camposeo, 2022. "Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    8. Wang, Tianyu & Wang, Zhenhua & Zhang, Jinzhu & Ma, Kai, 2023. "Application effect of different oxygenation methods with mulched drip irrigation system in Xinjiang," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    10. Xia Li & Xun Li & Yang Li, 2022. "Research on reclaimed water from the past to the future: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 112-137, January.
    11. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    12. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.
    13. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    14. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    15. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).
    16. ur Rehman, Khalil & Bukhari, Syed Mohsin & Andleeb, Shahla & Mahmood, Adeel & Erinle, Kehinde O. & Naeem, Mian Muhammad & Imran, Qaiser, 2019. "Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: The particular case of Sahiwal district in Pakistan," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    18. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    19. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    20. Perulli, Giulio Demetrio & Bresilla, Kushtrim & Manfrini, Luigi & Boini, Alexandra & Sorrenti, Giovambattista & Grappadelli, Luca Corelli & Morandi, Brunella, 2019. "Beneficial effect of secondary treated wastewater irrigation on nectarine tree physiology," Agricultural Water Management, Elsevier, vol. 221(C), pages 120-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1345-:d:1186088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.