IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i7p1332-d1183409.html
   My bibliography  Save this article

Modeling Land Use and Climate Change Effects on Soil Organic Carbon Storage under Different Plantation Systems in Mizoram, Northeast India

Author

Listed:
  • Uttam Kumar Sahoo

    (Department of Forestry, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl 796004, India)

  • Jitendra Ahirwal

    (Department of Forestry, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl 796004, India
    Centre of Environmental Studies, University of Allahabad, Prayagraj 211002, India)

  • Krishna Giri

    (Indian Council for Forestry Research and Education, Dehradun 248006, India)

  • Gaurav Mishra

    (Indian Council for Forestry Research and Education, Dehradun 248006, India)

  • Rosa Francaviglia

    (Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Rome, Italy)

Abstract

Soil carbon sequestration is vital to reduce the atmospheric carbon concentration, which is expected to increase within future climatic scenarios. The present study aims to investigate the effects of land use changes to different plantation systems on SOC stocks, and simulate these changes using the RothC model in Mizoram, India. With this aim, four land uses, viz., secondary forest, oil palm, orange, and arecanut plantations, established on degraded shifting cultivation lands, and a control natural forest were selected for this study. The soils were sampled 0–30 cm in the secondary forest, plantations, and the natural forest, at an interval of five years. Measured SOC stocks were the highest in the secondary forest (67.0 Mg C ha −1 ) and the lowest under the oil palm plantation (37.4 Mg C ha −1 ), 10 years after land use conversion. The climate change projections for 2021–2035 and 2036–2050 indicated that temperature and rainfall changes, projected to increase by 0.8 and 2.0 °C, and 5.9 and 5.4%, respectively, will affect SOC stocks in the future differently, depending on the land use and carbon input from vegetation. Baseline climate simulations under land use change showed the highest increase in the SOC stock under the secondary forest (116%), and the lowest in the oil palm plantation (27%). Overall, the model predicted that SOC stocks would increase, but the rate of change (0.23–1.86 Mg C ha −1 yr −1 ) varied with different land uses, plant species, and land management practices. The model results indicated that restoring secondary forest following the abandonment of a shifting cultivation and orange plantations are the best options to improve SOC stocks within future climate change scenarios. Conversely, arecanut and oil palm need to be reduced because the SOC storage is lower.

Suggested Citation

  • Uttam Kumar Sahoo & Jitendra Ahirwal & Krishna Giri & Gaurav Mishra & Rosa Francaviglia, 2023. "Modeling Land Use and Climate Change Effects on Soil Organic Carbon Storage under Different Plantation Systems in Mizoram, Northeast India," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1332-:d:1183409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/7/1332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/7/1332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Detlef Vuuren & Timothy Carter, 2014. "Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old," Climatic Change, Springer, vol. 122(3), pages 415-429, February.
    2. Mishra, Gaurav & Jangir, Abhishek & Francaviglia, Rosa, 2019. "Modeling soil organic carbon dynamics under shifting cultivation and forests using Rothc model," Ecological Modelling, Elsevier, vol. 396(C), pages 33-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Harrison & R. Dunford & C. Savin & M. Rounsevell & I. Holman & A. Kebede & B. Stuch, 2015. "Cross-sectoral impacts of climate change and socio-economic change for multiple, European land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 279-292, February.
    2. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    3. Wolf, Joost & Kanellopoulos, Argyris & Kros, Johannes & Webber, Heidi & Zhao, Gang & Britz, Wolfgang & Reinds, Gert Jan & Ewert, Frank & de Vries, Wim, 2015. "Combined analysis of climate, technological and price changes on future arable farming systems in Europe," Agricultural Systems, Elsevier, vol. 140(C), pages 56-73.
    4. Titta Majasalmi & Micky Allen & Clara Antón-Fernández & Rasmus Astrup & Ryan M. Bright, 2020. "A simple grid-based framework for simulating forest structural trajectories linked to transient forest management scenarios in Fennoscandia," Climatic Change, Springer, vol. 162(4), pages 2139-2155, October.
    5. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    6. Jha, Pramod & Lakaria, Brij Lal & Vishwakarma, AK & Wanjari, RH & Mohanty, M & Sinha, Nishant K & Somasundaram, J & Dheri, GS & Dwivedi, AK & Sharma, Raj Paul & Singh, Muneshwar & Dalal, RC & Biswas, , 2021. "Modeling the organic carbon dynamics in long-term fertilizer experiments of India using the Rothamsted carbon model," Ecological Modelling, Elsevier, vol. 450(C).
    7. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    8. Livia Rasche & Uwe A. Schneider & Martha Bolívar Lobato & Ruth Sos Del Diego & Tobias Stacke, 2018. "Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena River Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-27, January.
    9. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    10. Jiayi Fang & Robert J. Nicholls & Sally Brown & Daniel Lincke & Jochen Hinkel & Athanasios T. Vafeidis & Shiqiang Du & Qing Zhao & Min Liu & Peijun Shi, 2022. "Benefits of subsidence control for coastal flooding in China," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Mishra, Gaurav & Sarkar, Avishek & Giri, Krishna & Nath, Arun Jyoti & Lal, Rattan & Francaviglia, Rosa, 2021. "Changes in soil carbon stocks under plantation systems and natural forests in Northeast India," Ecological Modelling, Elsevier, vol. 446(C).
    12. Junfang Zhao & Jianyong Ma & Meiting Hou & Sen Li, 2020. "Spatial–temporal variations of carbon storage of the global forest ecosystem under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 603-624, April.
    13. Delpiazzo, Elisa & Parrado, Ramiro, 2016. "Analyzing the coordinated impacts of climate policies for financing adaptation and development actions," Conference papers 332737, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Nir Y. Krakauer, 2014. "Economic Growth Assumptions in Climate and Energy Policy," Sustainability, MDPI, vol. 6(3), pages 1-14, March.
    15. Arrieta, E.M. & González, A.D., 2018. "Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina," Food Policy, Elsevier, vol. 79(C), pages 58-66.
    16. Qian Wang & Deepika Koundal, 2022. "Dynamics of food nutrient loss and prediction of nutrient loss under variable temperature conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 225-235, March.
    17. Zhao, Xiaohu & Huang, Guohe & Li, Yongping & Lu, Chen, 2023. "Responses of hydroelectricity generation to streamflow drought under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    18. Nair, Mahendhiran & Arvin, Mak B. & Pradhan, Rudra P. & Bahmani, Sahar, 2021. "Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries," Renewable Energy, Elsevier, vol. 167(C), pages 132-145.
    19. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    20. Giovanni Litt & Mattia Bertin & Vittore Negretto & Francesco Musco, 2022. "Reinterpreting Spatial Planning Cultures to Define Local Adaptation Cultures: A Methodology from the Central Veneto Region Case," Sustainability, MDPI, vol. 14(12), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1332-:d:1183409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.