IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p640-d1091257.html
   My bibliography  Save this article

Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs ( Ficus carica L.)

Author

Listed:
  • Elias Ariel Moura

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Vander Mendonça

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Vladimir Batista Figueirêdo

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Luana Mendes Oliveira

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Marlenildo Ferreira Melo

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Toni Halan Silva Irineu

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Alex Danilo Monte Andrade

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Edvan Alves Chagas

    (Departamento de Produção Vegetal, Empresa Brasileira de Pesquisa Agropecuária, Boa Vista 69301-970, RR, Brazil)

  • Pollyana Cardoso Chagas

    (Departamento de Produção Vegetal, Universidade Federal de Roraima, Boa Vista 69310-000, RR, Brazil)

  • Enoch Souza Ferreira

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

  • Luciana Freitas Medeiros Mendonça

    (Departamento de Fitotecnia, Universidade Federal de Campina Grande, Pombal 58840-000, PB, Brazil)

  • Francisco Romário Andrade Figueiredo

    (Departamento de Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil)

Abstract

The need to diversify agricultural production has fostered the cultivation of several crops under environmental conditions atypical to their origin, justifying the extreme importance of studies on the agricultural management of crops in semiarid regions. In this context, this study aimed to evaluate the effects of irrigation depth and potassium doses on fig quality under semiarid conditions. The experiment was conducted in a 4 × 4 split-split-plot design, in randomized block design, with three replicates. The plots corresponded to four irrigation levels (50%, 75%, 100%, and 125% ETc), the subplots consisted of four potassium doses (0, 60, 120, and 240 g K 2 O plant −1 ), and the sub-subplot corresponded to the crop years (2018/19 and 2019/20). Results showed that water deficit reduced fig productivity, and the irrigation levels equal to or greater than 100% ETc performed cumulatively throughout the growing cycles. Therefore, irrigation depths from 85.19% to 95.16% ETc are recommended for greater water-use efficiency and fruit quality. Furthermore, potassium fertilization mitigated water stress in fig plants, allowing for reduced irrigation levels, especially in the second year, without compromising fruit traits.

Suggested Citation

  • Elias Ariel Moura & Vander Mendonça & Vladimir Batista Figueirêdo & Luana Mendes Oliveira & Marlenildo Ferreira Melo & Toni Halan Silva Irineu & Alex Danilo Monte Andrade & Edvan Alves Chagas & Pollya, 2023. "Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs ( Ficus carica L.)," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:640-:d:1091257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ertek, Ahmet & Sensoy, Suat & Gedik, Ibrahim & Kucukyumuk, Cenk, 2006. "Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 159-172, March.
    2. Moursi, Hossam & Kim, Daeha & Kaluarachchi, Jagath J., 2017. "A probabilistic assessment of agricultural water scarcity in a semi-arid and snowmelt-dominated river basin under climate change," Agricultural Water Management, Elsevier, vol. 193(C), pages 142-152.
    3. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    4. Abdolahipour, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2018. "Time and amount of supplemental irrigation at different distances from tree trunks influence on soil water distribution, evaporation and evapotranspiration in rainfed fig orchards," Agricultural Water Management, Elsevier, vol. 203(C), pages 322-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.
    5. Xu, Jing & Li, Xiaofang & Wan, Wenliang & Zhu, Xiaoling & Li, Changhong & Zhao, Xiaowen & Zhao, Yanhui & Pang, Shenqun & Diao, Ming, 2024. "Impact of regulated deficit irrigation on the dynamics of quality changes in processing tomato fruits during ripening," Agricultural Water Management, Elsevier, vol. 304(C).
    6. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Alomran, Abdulrasoul Mosa & Louki, Ibrahim Idriss, 2024. "Impact of irrigation systems on water saving and yield of greenhouse and open field cucumber production in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 302(C).
    8. Abdelraouf R. E. & H. G. Ghanem & Najat A. Bukhari & Mohamed El-Zaidy, 2020. "Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    9. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Ertek, A. & Kara, B., 2013. "Yield and quality of sweet corn under deficit irrigation," Agricultural Water Management, Elsevier, vol. 129(C), pages 138-144.
    12. Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    14. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    15. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Lu, Jia & Shao, Guangcheng & Wang, Weiguang & Gao, Yang & Wang, Zhiyu & Zhang, Ying & Wang, Jiao & Song, Enze, 2024. "The role of hydraulic lift in tomato yield and fruit quality under different water and salt stresses," Agricultural Water Management, Elsevier, vol. 299(C).
    19. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    20. repec:caa:jnlpse:v:preprint:id:401-2023-pse is not listed on IDEAS
    21. Bozkurt, Sefer & Mansuroglu, Gulsum Sayilikan, 2018. "Responses of unheated greenhouse grown green bean to buried drip tape placement depth and watering levels," Agricultural Water Management, Elsevier, vol. 197(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:640-:d:1091257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.