IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp322-332.html
   My bibliography  Save this article

Time and amount of supplemental irrigation at different distances from tree trunks influence on soil water distribution, evaporation and evapotranspiration in rainfed fig orchards

Author

Listed:
  • Abdolahipour, Mohammad
  • Kamgar-Haghighi, Ali Akbar
  • Sepaskhah, Ali Reza

Abstract

This study was carried out in Estahban, Iran, during 2013 and 2014 to identify the optimal time and amount of supplemental irrigation at different distances from tree trunks on a rainfed fig orchard. This region is distinguished as the largest producer of dried figs in Iran and the world and its production is highly dependent on precipitation. A split–split plot statistical design with four replicates was used to conduct the experiment. Irrigation treatments based on the position of application around trees were: in a micro-catchment close to tree trunks; in three holes inside of tree canopies with a mean canopy of 3.2 m diameter (placed 1–1.1 m from tree trunks); and in four holes outside of tree canopies placed 2.1–2.2 m from tree trunks were used in this experiment. Irrigation time treatments consisted of: (a) in early spring; (b) in mid-summer and the three different volumes of irrigation water were used: no supplemental irrigation (control), and either 1000 or 2000 l of irrigation water per tree. Results showed a high evaporation rate in the area which used nearly half of the rainfall during autumn and winter. There was a significant positive correlation between soil water content (SWC) and temporal rainfall distribution as r** = 0.63 (p < 0.001) over two years. Under drought conditions, irrigated trees showed higher ETa that was close to the ETa in years with normal rainfall. Compared to irrigation in summer, irrigation in early spring kept higher SWC for a longer time period in the soil profile and irrigation far from trees increased soil surface evaporation especially in summer. This study suggests that using supplemental irrigation with 2000 l per tree of water in early spring near tree trunk could provide higher SWC and lower surface evaporation for rainfed fig orchards during drought conditions.

Suggested Citation

  • Abdolahipour, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2018. "Time and amount of supplemental irrigation at different distances from tree trunks influence on soil water distribution, evaporation and evapotranspiration in rainfed fig orchards," Agricultural Water Management, Elsevier, vol. 203(C), pages 322-332.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:322-332
    DOI: 10.1016/j.agwat.2018.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418302348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    2. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    3. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]," Agricultural Water Management, Elsevier, vol. 97(10), pages 1486-1494, October.
    4. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    5. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    6. Sepaskhah, A. R. & Ilampour, S., 1995. "Effects of soil moisture stress on evapotranspiration partitioning," Agricultural Water Management, Elsevier, vol. 28(4), pages 311-323, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias Ariel Moura & Vander Mendonça & Vladimir Batista Figueirêdo & Luana Mendes Oliveira & Marlenildo Ferreira Melo & Toni Halan Silva Irineu & Alex Danilo Monte Andrade & Edvan Alves Chagas & Pollya, 2023. "Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs ( Ficus carica L.)," Agriculture, MDPI, vol. 13(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    2. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Abdulrahman Alhashimi & Arwa Abdulkreem AL-Huqail & Mustafa H. Hashem & Basem M. M. Bakr & Waleed M. E. Fekry & Hosny F. Abdel-Aziz & Ashraf E. Hamdy & Ramadan Eid Abdelraouf & Maher Fathy, 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    6. Martínez-Nicolás, J.J. & Galindo, A. & Griñán, I. & Rodríguez, P. & Cruz, Z.N. & Martínez-Font, R. & Carbonell-Barrachina, A.A. & Nouri, H. & Melgarejo, P., 2019. "Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    8. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    9. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    12. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    13. Romero, Pascual & Botía, Pablo & Morote, Elisa & Navarro, Josefa María, 2024. "Optimizing deficit irrigation in Monastrell vines grafted on rootstocks of different vigour under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 292(C).
    14. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    15. Sławomir Głuszek & Lidia Sas-Paszt & Edyta Derkowska & Beata Sumorok & Mirosław Sitarek, 2021. "Influence of various biofertilizers on root growth dynamics in sweet cherry (Prunus avium L.) cv. 'Vanda'," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 48(3), pages 105-116.
    16. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    17. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    18. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    20. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:322-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.