IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p419-d1064767.html
   My bibliography  Save this article

Effects of Nutrient Supply and Seed Size on Germination Parameters and Yield in the Next Crop Year of Winter Wheat ( Triticum aestivum L.)

Author

Listed:
  • István Kristó

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Marianna Vályi-Nagy

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Attila Rácz

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Katalin Irmes

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Lajos Szentpéteri

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Márton Jolánkai

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Gergő Péter Kovács

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Mária Ágnes Fodor

    (Environmental Sciences PhD School, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Apolka Ujj

    (Institute of Rural Development and Sustainable Economy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Klára Veresné Valentinyi

    (Institute of Rural Development and Sustainable Economy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Melinda Tar

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

Abstract

Winter wheat is one of the most important crops globally and also in Hungary. Hungary has excellent crop production potential including seed production. The aim of our experiment is to determine the effects of different amounts and proportions of nutrients and those of the seed size of winter wheat in laboratory seed tests on the seed parameters (germination percentage, germination power, seedling health and vigour), as well as in field tests of the seed parameters (emergence percentage and yield of next crop year). Laboratory seed tests of winter wheat variety GK Petur were conducted with seeds that underwent ten nutrient treatments and of three seed size fractions over four crop years, together with field experiments in three growing seasons. Compared to the untreated control group, N treatments significantly decreased the health of the seedlings in the next generation of winter wheat. PK treatments without N increased the germination percentage, vigour value and emergence percentage significantly, but the health of the seedlings decreased. In contrast, NPK treatments with a ratio of 2:1:1 improved all the tested parameters compared to those of the control group. The increase in seed sizes significantly increased the germination power, seedling health, vigour value, emergence percentage and the yield of the next crop year. It can be concluded that the factors of nutrient supply, crop year of the seed production and the seed size significantly influence the quality of the seed (germination percentage, germination power, seedling health, vigour and emergence percentage), thus also the yield of the next generation.

Suggested Citation

  • István Kristó & Marianna Vályi-Nagy & Attila Rácz & Katalin Irmes & Lajos Szentpéteri & Márton Jolánkai & Gergő Péter Kovács & Mária Ágnes Fodor & Apolka Ujj & Klára Veresné Valentinyi & Melinda Tar, 2023. "Effects of Nutrient Supply and Seed Size on Germination Parameters and Yield in the Next Crop Year of Winter Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:419-:d:1064767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lyndré Nel & Ana Flávia Boeni & Viola Judit Prohászka & Alfréd Szilágyi & Eszter Tormáné Kovács & László Pásztor & Csaba Centeri, 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    2. James R. Hunt & Julianne M. Lilley & Ben Trevaskis & Bonnie M. Flohr & Allan Peake & Andrew Fletcher & Alexander B. Zwart & David Gobbett & John A. Kirkegaard, 2019. "Early sowing systems can boost Australian wheat yields despite recent climate change," Nature Climate Change, Nature, vol. 9(3), pages 244-247, March.
    3. Fa Zhao & Guijun Yang & Hao Yang & Huiling Long & Weimeng Xu & Yaohui Zhu & Yang Meng & Shaoyu Han & Miao Liu, 2022. "A Method for Prediction of Winter Wheat Maturity Date Based on MODIS Time Series and Accumulated Temperature," Agriculture, MDPI, vol. 12(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Ma & Qingbai Hu & Changle Wang & Jungang Lv & Changhong Mi & Rongguang Shi & Xiaoli Wang & Yanying Yang & Wenhao Wu, 2022. "Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    2. Keating, Brian A., 2020. "Crop, soil and farm systems models – science, engineering or snake oil revisited," Agricultural Systems, Elsevier, vol. 184(C).
    3. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    4. Jian Chen & Kai Wang & Maomao Li & Xianzhi Wang & Xiaoxiao Zhang & Lixin Niu & Yanlong Zhang, 2023. "Prediction and Evolution of Carbon Storage of Terrestrial Ecosystems in the Qinling Mountains North Slope Region, China," Land, MDPI, vol. 12(11), pages 1-17, November.
    5. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    6. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Rose, Terry J. & Parvin, Shahnaj & Han, Eusun & Condon, Jason & Flohr, Bonnie M. & Schefe, Cassandra & Rose, Michael T. & Kirkegaard, John A., 2022. "Prospects for summer cover crops in southern Australian semi-arid cropping systems," Agricultural Systems, Elsevier, vol. 200(C).
    8. Tong Lin & Dafang Wu & Muzhuang Yang & Peifang Ma & Yanyan Liu & Feng Liu & Ziying Gan, 2022. "Evolution and Simulation of Terrestrial Ecosystem Carbon Storage and Sustainability Assessment in Karst Areas: A Case Study of Guizhou Province," IJERPH, MDPI, vol. 19(23), pages 1-19, December.
    9. Huan Tang & Xiao Liu & Ruijie Xie & Yuqin Lin & Jiawei Fang & Jing Yuan, 2024. "Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China," Energies, MDPI, vol. 17(13), pages 1-16, July.
    10. Eszter Tormáné Kovács & Csaba Centeri, 2023. "Assessment of Ecosystem Services at Different Scales," Sustainability, MDPI, vol. 15(24), pages 1-5, December.
    11. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
    12. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).
    13. Flohr, B.M. & Ouzman, J. & McBeath, T.M. & Rebetzke, G.J. & Kirkegaard, J.A. & Llewellyn, R.S., 2021. "Redefining the link between rainfall and crop establishment in dryland cropping systems," Agricultural Systems, Elsevier, vol. 190(C).
    14. Ning Huang & Miriam Athmann & Eusun Han, 2020. "Biopore-Induced Deep Root Traits of Two Winter Crops," Agriculture, MDPI, vol. 10(12), pages 1-15, December.
    15. Sara Minoli & Jonas Jägermeyr & Senthold Asseng & Anton Urfels & Christoph Müller, 2022. "Global crop yields can be lifted by timely adaptation of growing periods to climate change," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Shuaijun Yue & Guangxing Ji & Weiqiang Chen & Junchang Huang & Yulong Guo & Mingyue Cheng, 2023. "Spatial and Temporal Variability Characteristics of Future Carbon Stocks in Anhui Province under Different SSP Scenarios Based on PLUS and InVEST Models," Land, MDPI, vol. 12(9), pages 1-17, August.
    17. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Kefauver, Shawn C. & Nieto-Taladriz, Maria Teresa & Serret, Maria Dolores & Araus, José Luis, 2022. "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions," Agricultural Water Management, Elsevier, vol. 259(C).
    18. Jiayu Wang & Tian Chen, 2022. "A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China," Land, MDPI, vol. 11(11), pages 1-23, October.
    19. Maria Ragosta & Giada Daniele & Vito Imbrenda & Rosa Coluzzi & Mariagrazia D’Emilio & Maria Lanfredi & Nadia Matarazzo, 2024. "Land Transformations in Irpinia (Southern Italy): A Tale on the Socio-Economic Dynamics Acting in a Marginal Area of the Mediterranean Europe," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
    20. Liu, Huan & Pequeno, Diego N.L. & Hernández-Ochoa, Ixchel M. & Krupnik, Timothy J. & Sonder, Kai & Xiong, Wei & Xu, Yinlong, 2020. "A consistent calibration across three wheat models to simulate wheat yield and phenology in China," Ecological Modelling, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:419-:d:1064767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.