IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p634-d462029.html
   My bibliography  Save this article

Biopore-Induced Deep Root Traits of Two Winter Crops

Author

Listed:
  • Ning Huang

    (Department of Agroecology and Organic Farming, Faculty of Agriculture, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany
    Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 13, 2630 Taastrup, Denmark)

  • Miriam Athmann

    (Department of Agroecology and Organic Farming, Faculty of Agriculture, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany)

  • Eusun Han

    (Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 13, 2630 Taastrup, Denmark)

Abstract

Deeper root growth can be induced by increased biopore density. In this study, we aimed to compare deep root traits of two winter crops in field conditions in response to altered biopore density as affected by crop sequence. Two fodder crop species—chicory and tall fescue—were grown for two consecutive years as preceding crops (pre-crops). Root traits of two winter crops—barley and canola, which were grown as subsequent crops (post-crops)—were measured using the profile wall and soil monolith method. While barley and canola differed greatly in deep root traits, they both significantly increased rooting density inside biopores by two-fold at soil depths shallower than 100 cm. A similar increase in rooting density in the bulk soil was observed below 100 cm soil depth. As a result, rooting depth significantly increased (>5 cm) under biopore-rich conditions throughout the season of the winter crops. Morphological root traits revealed species-wise variation in response to altered biopore density, in which only barley increased root size under biopore-rich conditions. We concluded that large-sized biopores induce deeper rooting of winter crops that can increase soil resource acquisition potential, which is considered to be important for agricultural systems with less outsourced farm resources, e.g., Organic Agriculture. Crops with contrasting root systems can respond differently to varying biopore density, especially root morphology, which should be taken into account upon exploiting biopore-rich conditions in arable fields. Our results also indicate the need for further detailed research with a greater number of species, varieties and genotypes for functional classification of root plasticity against the altered subsoil structure.

Suggested Citation

  • Ning Huang & Miriam Athmann & Eusun Han, 2020. "Biopore-Induced Deep Root Traits of Two Winter Crops," Agriculture, MDPI, vol. 10(12), pages 1-15, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:634-:d:462029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kopke, Ulrich & Athmann, Miriam & Han, Eusun & Kautz, Timo, 2015. "Optimising Cropping Techniques for Nutrient and Environmental Management in Organic Agriculture," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    2. James R. Hunt & Julianne M. Lilley & Ben Trevaskis & Bonnie M. Flohr & Allan Peake & Andrew Fletcher & Alexander B. Zwart & David Gobbett & John A. Kirkegaard, 2019. "Early sowing systems can boost Australian wheat yields despite recent climate change," Nature Climate Change, Nature, vol. 9(3), pages 244-247, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rose, Terry J. & Parvin, Shahnaj & Han, Eusun & Condon, Jason & Flohr, Bonnie M. & Schefe, Cassandra & Rose, Michael T. & Kirkegaard, John A., 2022. "Prospects for summer cover crops in southern Australian semi-arid cropping systems," Agricultural Systems, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keating, Brian A., 2020. "Crop, soil and farm systems models – science, engineering or snake oil revisited," Agricultural Systems, Elsevier, vol. 184(C).
    2. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    3. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Rose, Terry J. & Parvin, Shahnaj & Han, Eusun & Condon, Jason & Flohr, Bonnie M. & Schefe, Cassandra & Rose, Michael T. & Kirkegaard, John A., 2022. "Prospects for summer cover crops in southern Australian semi-arid cropping systems," Agricultural Systems, Elsevier, vol. 200(C).
    5. Vesna Dragicevic & Milovan Stoiljkovic & Milan Brankov & Miodrag Tolimir & Marijenka Tabaković & Margarita S. Dodevska & Milena Simić, 2022. "Status of Essential Elements in Soil and Grain of Organically Produced Maize, Spelt, and Soybean," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    6. Merfield, Charles & Moller, Henrik & Manhire, Jon & Rosin, Chris & Norton, Solis & Carey, Peter & Hunt, Lesley & Reid, John & Fairweather, John & Benge, Jayson & Quellec, Isabelle Le & Campbell, Hugh , 2015. "Are Organic Standards Sufficient to Ensure Sustainable Agriculture? Lessons From New Zealand’s ARGOS and Sustainability Dashboard Projects," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    7. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).
    8. Flohr, B.M. & Ouzman, J. & McBeath, T.M. & Rebetzke, G.J. & Kirkegaard, J.A. & Llewellyn, R.S., 2021. "Redefining the link between rainfall and crop establishment in dryland cropping systems," Agricultural Systems, Elsevier, vol. 190(C).
    9. Ana Frelih-Larsen & Mandy Hinzmann & Sophie Ittner, 2018. "The ‘Invisible’ Subsoil: An Exploratory View of Societal Acceptance of Subsoil Management in Germany," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    10. Sara Minoli & Jonas Jägermeyr & Senthold Asseng & Anton Urfels & Christoph Müller, 2022. "Global crop yields can be lifted by timely adaptation of growing periods to climate change," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. István Kristó & Marianna Vályi-Nagy & Attila Rácz & Katalin Irmes & Lajos Szentpéteri & Márton Jolánkai & Gergő Péter Kovács & Mária Ágnes Fodor & Apolka Ujj & Klára Veresné Valentinyi & Melinda Tar, 2023. "Effects of Nutrient Supply and Seed Size on Germination Parameters and Yield in the Next Crop Year of Winter Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    12. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Kefauver, Shawn C. & Nieto-Taladriz, Maria Teresa & Serret, Maria Dolores & Araus, José Luis, 2022. "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Liu, Huan & Pequeno, Diego N.L. & Hernández-Ochoa, Ixchel M. & Krupnik, Timothy J. & Sonder, Kai & Xiong, Wei & Xu, Yinlong, 2020. "A consistent calibration across three wheat models to simulate wheat yield and phenology in China," Ecological Modelling, Elsevier, vol. 430(C).
    14. Peterson, C.A. & Pittelkow, C.M. & Lundy, M.E., 2023. "Targeted irrigation expands scope for winter cereal production in water-limited areas of California's San Joaquin Valley," Agricultural Systems, Elsevier, vol. 210(C).
    15. Ke Liu & Matthew Tom Harrison & Haoliang Yan & De Li Liu & Holger Meinke & Gerrit Hoogenboom & Bin Wang & Bin Peng & Kaiyu Guan & Jonas Jaegermeyr & Enli Wang & Feng Zhang & Xiaogang Yin & Sotirios Ar, 2023. "Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ahmed Rafique & Steven Burian & Daniyal Hassan & Rakhshinda Bano, 2020. "Analysis of Operational Changes of Tarbela Reservoir to Improve the Water Supply, Hydropower Generation, and Flood Control Objectives," Sustainability, MDPI, vol. 12(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:634-:d:462029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.