IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p1934-d958352.html
   My bibliography  Save this article

A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China

Author

Listed:
  • Jiayu Wang

    (School of Architecture, Tianjin University, Tianjin 300072, China
    Institute of Urban Space and Urban Design, School of Architecture, Tianjin University, Tianjin 300072, China)

  • Tian Chen

    (School of Architecture, Tianjin University, Tianjin 300072, China
    Institute of Urban Space and Urban Design, School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

Balancing urban development and ecosystem conservation in the context of natural resource scarcity can provide scientific guidance for land use planning. We integrated research methods, such as ecosystem services (ES) assessment, coastal vulnerability assessment, multi-objective linear planning, and land use change simulation, to develop a new model framework for multi-scenario urban land expansion simulation based on ecosystem services. In relation to the land use scale and constraints, we simulated three types of scenarios in 2035, including a status quo continuity scenario (SCS), economic development scenario (EDS), and ecological protection scenario (EPS), to explore the ideal land use optimization strategies to enhance ES and land use efficiency. The results indicated that the scale of construction land under the three scenarios grew, and arable land and grassland had the largest losses. The continued urban expansion in the Guangdong–Hong Kong–Macao Greater Bay Area has already had a significant negative impact on ecosystem services and could result in a total ESV loss of USD 28.1 billion by 2035 if an economic-first development model is adopted. Based on the hotspots of urban construction land expansion in the ecological–economic priority game, we proposed a classification and optimization strategy for land use, including proactive restoration of damaged ecological spaces with high ESVs (Zhaoqing City and Huizhou City), optimization of green space quality and formation of ecological corridors (Guangzhou City, Shenzhen City, Hong Kong, and Macao), and implementation of natural resource conservation planning and spatial regulation in the urban–rural integration area (Foshan City and Dongguan City). This research framework scientifically allocates the “quality” of ecosystem values and “quantity” of natural resources and provides a reference for regional “bottom-up” territorial spatial planning.

Suggested Citation

  • Jiayu Wang & Tian Chen, 2022. "A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China," Land, MDPI, vol. 11(11), pages 1-23, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1934-:d:958352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/1934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/1934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    2. Song Wang & Mengyuan Jia & Yahui Zhou & Fei Fan, 2020. "Impacts of changing urban form on ecological efficiency in China: a comparison between urban agglomerations and administrative areas," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(10), pages 1834-1856, August.
    3. V. P. Sathiya Bama & S. Rajakumari & R. Ramesh, 2020. "Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 829-842, January.
    4. Lyndré Nel & Ana Flávia Boeni & Viola Judit Prohászka & Alfréd Szilágyi & Eszter Tormáné Kovács & László Pásztor & Csaba Centeri, 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Yi Li & Jianhui Qiu & Zheng Li & Yangfan Li, 2018. "Assessment of Blue Carbon Storage Loss in Coastal Wetlands under Rapid Reclamation," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binkai Xu & Yanming Sun, 2023. "The Impact of Industrial Agglomeration on Urban Land Green Use Efficiency and Its Spatio-Temporal Pattern: Evidence from 283 Cities in China," Land, MDPI, vol. 12(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    2. Han, Albert Tonghoon & Kim, Heesoo & Remigio, Jonah & Oh, Chansol, 2024. "Impacts of New Town developments on carbon sinks: Implications from the Case of Seoul Metropolitan Area, Korea," Land Use Policy, Elsevier, vol. 143(C).
    3. Yiping Sun & Xiangyi Li & Tengyuan Zhang & Jiawei Fu, 2022. "Does Trade Policy Uncertainty Exacerbate Environmental Pollution?—Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    4. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    5. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    6. Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
    7. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    8. Tiantian Ma & Qingbai Hu & Changle Wang & Jungang Lv & Changhong Mi & Rongguang Shi & Xiaoli Wang & Yanying Yang & Wenhao Wu, 2022. "Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    9. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    10. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    11. Jian Chen & Kai Wang & Maomao Li & Xianzhi Wang & Xiaoxiao Zhang & Lixin Niu & Yanlong Zhang, 2023. "Prediction and Evolution of Carbon Storage of Terrestrial Ecosystems in the Qinling Mountains North Slope Region, China," Land, MDPI, vol. 12(11), pages 1-17, November.
    12. Lili Yang & Ning Ma, 2022. "Empirical Study on the Influence of Urban Environmental Industrial Structure Optimization on Ecological Landscape Greening Construction," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    13. Xiang Pan & Peiji Shi & Na Wu, 2020. "Spatial–Temporal Interaction Relationship between Ecosystem Services and Urbanization of Urban Agglomerations in the Transitional Zone of Three Natural Regions," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    14. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    15. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    16. Changping Zhao & Xiaojiang Xu & Yu Gong & Houming Fan & Haojia Chen, 2019. "Blue Carbon Cooperation in the Maritime Silk Road with Network Game Model and Simulation," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    17. Jinfeng Wang & Ya Li & Sheng Wang & Qing Li & Lingfeng Li & Xiaoling Liu, 2023. "Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    18. Wenyi Yang & Xueli Wang & Keke Zhang & Zikan Ke, 2020. "COVID-19, Urbanization Pattern and Economic Recovery: An Analysis of Hubei, China," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
    19. Zhang, Songlin & Miao, Xuaner & Zheng, Haoqing & Chen, Weihong & Wang, Huafeng, 2024. "Spatial functional division in urban agglomerations and carbon emission intensity: New evidence from 19 urban agglomerations in China," Energy, Elsevier, vol. 300(C).
    20. Wenbo Cai & Qing Zhu & Meitian Chen & Yongli Cai, 2021. "Spatiotemporal Change and the Natural–Human Driving Processes of a Megacity’s Coastal Blue Carbon Storage," IJERPH, MDPI, vol. 18(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1934-:d:958352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.