IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p256-d1042672.html
   My bibliography  Save this article

Multi-Environment Trials and Stability Analysis for Yield-Related Traits of Commercial Rice Cultivars

Author

Listed:
  • Seung Young Lee

    (Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
    National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Hyun-Sook Lee

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Chang-Min Lee

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Su-Kyung Ha

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Hyang-Mi Park

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • So-Myeong Lee

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Youngho Kwon

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Ji-Ung Jeung

    (National Institute of Crop Science, Rural Development Administration, Jeonju 55365, Republic of Korea)

  • Youngjun Mo

    (Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea)

Abstract

Multi-environment trials (METs) are essential in plant breeding programs to evaluate crop productivity and adaptability in diverse environments. In this study, we demonstrated the practical use of METs to evaluate grain yield and yield-related traits using 276 Korean rice cultivars, divided into three maturity groups (81 early-, 90 medium-, and 105 medium–late-maturing cultivars) grown in three regions (Jeonju, Suwon, and Miryang) and two planting seasons (early and regular planting) for two years. Due to the narrow genetic variability of the commercial cultivars, which are cultivated in relatively similar environmental conditions, genotype-by-environment interaction (GEI) effects were not statistically significant. However, genotype and environment evaluation using GGE biplot analysis exhibited distinct patterns of mega-environment formation, winning genotypes, ranking genotypes, discriminating power, and representativeness according to the differences in planting seasons and regions. Moreover, the simultaneous selection of stable high-performance genotypes using a weighted average of absolute scores from the singular-value decomposition of the matrix of BLUPs (WAASB) and a multi-trait stability index (MTSI) revealed six recommended genotypes each for early-maturing (Manho, Namil, Unkwang, Odae 1ho, Sinunbong 1ho, and Jonong) and medium-maturing (Sobi, Cheongdam, Shinbaeg, Boramchal, Mimyeon, and Saemimyeon) cultivars, and four genotypes for medium–late-maturing cultivars (Hanmauem, Dami, Baegseolchal, and Hangangchalbyeo). The winning genotypes of each trait can be used as parents to develop regional specialty cultivars by fine-tuning favorable traits, and recommended genotypes can be utilized as elite climate-resilient parents that can aid breeders in improving yield potential and stability across the planting seasons and regions.

Suggested Citation

  • Seung Young Lee & Hyun-Sook Lee & Chang-Min Lee & Su-Kyung Ha & Hyang-Mi Park & So-Myeong Lee & Youngho Kwon & Ji-Ung Jeung & Youngjun Mo, 2023. "Multi-Environment Trials and Stability Analysis for Yield-Related Traits of Commercial Rice Cultivars," Agriculture, MDPI, vol. 13(2), pages 1-13, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:256-:d:1042672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing Huang & Su Jang & Backki Kim & Zhongze Piao & Edilberto Redona & Hee-Jong Koh, 2021. "Evaluating Genotype × Environment Interactions of Yield Traits and Adaptability in Rice Cultivars Grown under Temperate, Subtropical and Tropical Environments," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    2. Xuehui Huang & Nori Kurata & Xinghua Wei & Zi-Xuan Wang & Ahong Wang & Qiang Zhao & Yan Zhao & Kunyan Liu & Hengyun Lu & Wenjun Li & Yunli Guo & Yiqi Lu & Congcong Zhou & Danlin Fan & Qijun Weng & Chu, 2012. "A map of rice genome variation reveals the origin of cultivated rice," Nature, Nature, vol. 490(7421), pages 497-501, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Chew, Soo Hong & Ebstein, Richard P. & Lu, Yunfeng, 2023. "Rice culture and the cushion hypothesis: Experimental evidence from incentivized risk taking tasks," Economics Letters, Elsevier, vol. 223(C).
    3. Rujia Chen & Ning Xiao & Yue Lu & Tianyun Tao & Qianfeng Huang & Shuting Wang & Zhichao Wang & Mingli Chuan & Qing Bu & Zhou Lu & Hanyao Wang & Yanze Su & Yi Ji & Jianheng Ding & Ahmed Gharib & Huixin, 2023. "A de novo evolved gene contributes to rice grain shape difference between indica and japonica," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Elisa Zampieri & Michele Pesenti & Fabio Francesco Nocito & Gian Attilio Sacchi & Giampiero Valè, 2023. "Rice Responses to Water Limiting Conditions: Improving Stress Management by Exploiting Genetics and Physiological Processes," Agriculture, MDPI, vol. 13(2), pages 1-23, February.
    6. Yajun Gou & Yueqin Heng & Wenyan Ding & Canhong Xu & Qiushuang Tan & Yajing Li & Yudong Fang & Xiaoqing Li & Degui Zhou & Xinyu Zhu & Mingyue Zhang & Rongjian Ye & Haiyang Wang & Rongxin Shen, 2024. "Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Bin Yang & Jiali Zeng & Shaona Chen & Shengyu Li & Longmei Wu & Xiaorong Wan, 2022. "Genome-Wide Association Study Reveals the Genetic Basis of Seed Germination in Japonica Rice," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    8. Decha Songtoasesakul & Wanchana Aesomnuk & Sarinthip Pannak & Jonaliza Lanceras Siangliw & Meechai Siangliw & Theerayut Toojinda & Samart Wanchana & Siwaret Arikit, 2023. "QTL-seq Identifies Pokkali-Derived QTLs and Candidate Genes for Salt Tolerance at Seedling Stage in Rice ( Oryza sativa L.)," Agriculture, MDPI, vol. 13(8), pages 1-15, August.
    9. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Chuanzhong Zhang & Hongru Wang & Xiaojie Tian & Xinyan Lin & Yunfei Han & Zhongmin Han & Hanjing Sha & Jia Liu & Jianfeng Liu & Jian Zhang & Qingyun Bu & Jun Fang, 2024. "A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Jingfen Huang & Yilin Zhang & Yapeng Li & Meng Xing & Cailin Lei & Shizhuang Wang & Yamin Nie & Yanyan Wang & Mingchao Zhao & Zhenyun Han & Xianjun Sun & Han Zhou & Yan Wang & Xiaoming Zheng & Xiaoron, 2024. "Haplotype-resolved gapless genome and chromosome segment substitution lines facilitate gene identification in wild rice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xingming Sun & Haiyan Xiong & Conghui Jiang & Dongmei Zhang & Zengling Yang & Yuanping Huang & Wanbin Zhu & Shuaishuai Ma & Junzhi Duan & Xin Wang & Wei Liu & Haifeng Guo & Gangling Li & Jiawei Qi & C, 2022. "Natural variation of DROT1 confers drought adaptation in upland rice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Changxuan Xia & Guohua Liang & Kang Chong & Yunyuan Xu, 2023. "The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Ben Liao & You-Huang Xiang & Yan Li & Kai-Yang Yang & Jun-Xiang Shan & Wang-Wei Ye & Nai-Qian Dong & Yi Kan & Yi-Bing Yang & Huai-Yu Zhao & Hong-Xiao Yu & Zi-Qi Lu & Yan Zhao & Qiang Zhao & Dongling G, 2024. "Dysfunction of duplicated pair rice histone acetyltransferases causes segregation distortion and an interspecific reproductive barrier," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Naihui Guo & Shengjia Tang & Yakun Wang & Wei Chen & Ruihu An & Zongliang Ren & Shikai Hu & Shaoqing Tang & Xiangjin Wei & Gaoneng Shao & Guiai Jiao & Lihong Xie & Ling Wang & Ying Chen & Fengli Zhao , 2024. "A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Yongqi He & Shan Sun & Jia Zhao & Zhibo Huang & Liling Peng & Chengwei Huang & Zhengbin Tang & Qianqian Huang & Zhoufei Wang, 2023. "UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Luchang Ming & Debao Fu & Zhaona Wu & Hu Zhao & Xingbing Xu & Tingting Xu & Xiaohu Xiong & Mu Li & Yi Zheng & Ge Li & Ling Yang & Chunjiao Xia & Rongfang Zhou & Keyan Liao & Qian Yu & Wenqi Chai & Sij, 2023. "Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Lin-Feng Li & Tonapha Pusadee & Marshall J. Wedger & Ya-Ling Li & Ming-Rui Li & Yee-Ling Lau & Soo-Joo Yap & Sansanee Jamjod & Benjavan Rerkasem & Yan Hao & Beng-Kah Song & Kenneth M. Olsen, 2024. "Porous borders at the wild-crop interface promote weed adaptation in Southeast Asia," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Haiwang Yue & Hugh G. Gauch & Jianwei Wei & Junliang Xie & Shuping Chen & Haicheng Peng & Junzhou Bu & Xuwen Jiang, 2022. "Genotype by Environment Interaction Analysis for Grain Yield and Yield Components of Summer Maize Hybrids across the Huanghuaihai Region in China," Agriculture, MDPI, vol. 12(5), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:256-:d:1042672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.