IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i12p2228-d1292142.html
   My bibliography  Save this article

Classification of Plenodomus lingam and Plenodomus biglobosus in Co-Occurring Samples Using Reflectance Spectroscopy

Author

Listed:
  • Andrzej Wójtowicz

    (Institute of Plant Protection-National Research Institute, 60-318 Poznan, Poland)

  • Jan Piekarczyk

    (Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, 60-680 Poznan, Poland)

  • Marek Wójtowicz

    (Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 60-479 Poznan, Poland)

  • Jarosław Jasiewicz

    (Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, 60-680 Poznan, Poland)

  • Sławomir Królewicz

    (Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, 60-680 Poznan, Poland)

  • Elżbieta Starzycka-Korbas

    (Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 60-479 Poznan, Poland)

Abstract

Under natural conditions, mixed infections are often observed when two or more species of plant pathogens are present on one host. Thus, the detection and characterization of co-occurring pest species is a challenge of great importance. In this study, we focused on the development of a spectral unmixing method for the discrimination of two fungi species, Plenodomus lingam and Plenodomus biglobosus , the pathogens of oilseed rape. Over 24 days, spectral reflectance measurements from Petri dishes inoculated with fungi were conducted. Four experimental combinations were used: the first two were pure fungal samples, while the other two were co-occurring fungal samples. The results of the study show the possibility of distinguishing, based on spectral characteristics, between P. lingam and P. biglobosus not only in pure but also in co-occurring samples. We observed the changes in the reflectance of electromagnetic radiation from the tested fungi over time and a strong correlation between the reflectance and changes in the areas of the mycelia on the Petri dishes. Moreover, the wavelengths most useful for spectral classification of the tested fungal mycelia were selected. Finally, a spectral unmixing model was proposed, which enables the estimation of the areas of two pathogens in co-occurring samples based on the spectral characteristics of the entire plate with an error smaller than 0.2. To our knowledge, the present study is the first report examining the use of reflectance spectroscopy methods for classifying pathogens on the same Petri dish. The study results indicate the feasibility of reflectance spectroscopy as a nondestructive sampling method for plant pathogen detection and classification.

Suggested Citation

  • Andrzej Wójtowicz & Jan Piekarczyk & Marek Wójtowicz & Jarosław Jasiewicz & Sławomir Królewicz & Elżbieta Starzycka-Korbas, 2023. "Classification of Plenodomus lingam and Plenodomus biglobosus in Co-Occurring Samples Using Reflectance Spectroscopy," Agriculture, MDPI, vol. 13(12), pages 1-14, November.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:12:p:2228-:d:1292142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/12/2228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/12/2228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    20. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:12:p:2228-:d:1292142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.