IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i11p2127-d1277963.html
   My bibliography  Save this article

Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea ( Cicer arietinum L.) Cultivars

Author

Listed:
  • Hawi Negusse

    (Institute of Biotechnology, Addis Ababa University, Addis Ababa 1000, Ethiopia
    Bio and Emerging Technology Institute (BETin), Addis Ababa 1000, Ethiopia)

  • Teklehaimanot Haileselassie

    (Institute of Biotechnology, Addis Ababa University, Addis Ababa 1000, Ethiopia)

  • Mulatu Geleta

    (Department of Plant Breeding, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden)

  • Kassahun Tesfaye

    (Institute of Biotechnology, Addis Ababa University, Addis Ababa 1000, Ethiopia
    Bio and Emerging Technology Institute (BETin), Addis Ababa 1000, Ethiopia)

Abstract

Globally, more than half of potentially arable land is acidic, and aluminum (Al) is the primary factor limiting plant growth and crop productivity on acidic soils worldwide. The development and utilization of Al-tolerant crops is a sustainable approach to enhancing crop production on acidic soils. For this purpose, screening available genetic resources under Al-stressed conditions is a crucial initial step. Hence, the present study aimed to evaluate the Al tolerance of 264 Ethiopian chickpea landraces under hydroponic conditions without Al (control) and with 120 µM Al (Al treatment). Significant ( p < 0.001) variations were detected among the genotypes for all studied traits under control (0 µM Al) and 120 µM Al concentration. The relative growth values for the 120 µM Al/0 µM Al ratio was also significant, indicating the presence of a considerable amount of genetic variation in Ethiopian chickpea landraces in terms of Al tolerance. Based on relative root growth (RRG) as an Al-tolerance parameter, the genotypes were grouped into five distinct ( p < 0.001) classes. The highest RRG value (1.59) was obtained for genotype ETC_209008, followed by ETC_41184 and ETC_212589, while ETC_208995 had the lowest RRG value of 0.27. Of the total landraces screened, 35% had higher RRG values than the tolerant genotype ETC_WL_1_2016 used as a reference, indicating the presence of adequate genotypes capable of outperforming the reference genotype on acidic soils. The genotypes identified in the present study may serve as sources of novel alleles in genes regulating Al tolerance in chickpea that can be utilized in breeding programs to improve the crop’s adaptation to acidic soils, thus contributing to smallholder farmers’ increased nutritional and food security.

Suggested Citation

  • Hawi Negusse & Teklehaimanot Haileselassie & Mulatu Geleta & Kassahun Tesfaye, 2023. "Untapped Genetic Resources for Breeding Acidic Soil-Adapted Chickpea ( Cicer arietinum L.) Cultivars," Agriculture, MDPI, vol. 13(11), pages 1-13, November.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2127-:d:1277963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/11/2127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/11/2127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vivek Kumar Singh & Subhash Chander & Ram Kumar Sheoran & Anu & Om Parkash Sheoran & Ana Luisa Garcia-Oliveira, 2022. "Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.)," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(4), pages 201-209.
    2. Md Babul Akter & Azad Mosab-Bin & Mohammad Kamruzzaman & Reflinur Reflinur & Nazmun Nahar & Md Sohel Rana & Md Imdadul Hoque & Md Shahidul Islam, 2022. "Morpho-molecular diversity study of rice cultivars in Bangladesh," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 64-72.
    3. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    2. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    3. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    4. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    5. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    6. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    7. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    9. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    10. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    11. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    12. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    13. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).
    14. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    15. Juan García-Quezada & Ricardo Musule-Lagunes & José Angel Prieto-Ruíz & Daniel José Vega-Nieva & Artemio Carrillo-Parra, 2022. "Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico," Energies, MDPI, vol. 16(1), pages 1-22, December.
    16. Marika Vitali & Paolo Bosi & Elena Santacroce & Paolo Trevisi, 2021. "The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
    17. Ariane F. Busso-Lopes & Leandro X. Neves & Guilherme A. Câmara & Daniela C. Granato & Marco Antônio M. Pretti & Henry Heberle & Fábio M. S. Patroni & Jamile Sá & Sami Yokoo & César Rivera & Romênia R., 2022. "Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    18. Silvana Nisgoski & Joielan Xipaia dos Santos & Helena Cristina Vieira & Tawani Lorena Naide & Rafaela Stange & Washington Duarte Silva da Silva & Deivison Venicio Souza & Natally Celestino Gama & Márc, 2023. "Provenance Identification of Leaves and Nuts of Bertholletia excelsa Bonpl by Near-Infrared Spectroscopy and Color Parameters for Sustainable Extraction," Sustainability, MDPI, vol. 15(21), pages 1-15, November.
    19. Mailu, Stephen & Will, Margret & Mwanza, Rosemary & Nkanata, Kinyua & Mbugua, David, 2014. "Milk supply contracts and default incidence in Kenya," MPRA Paper 57381, University Library of Munich, Germany, revised 10 Apr 2014.
    20. Igor Barahona & Daría Micaela Hernández & Héctor Hugo Pérez-Villarreal & María Pilar Martínez-Ruíz, 2018. "Identifying research topics in marketing science along the past decade: a content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 293-312, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2127-:d:1277963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.